
SEVENTH FRAMEWORK PROGRAMME
Challenge 1
Information and Communication Technologies

Document Type: Deliverable

Title: TAS3 Protocols, API, and Concrete Ar-

chitecture

Work Package: WP2

Deliverable Nr: D2.4

Dissemination: Public

Preparation Date: 30 June 2010

Version: 14 (1.67)

Legal Notice
All information included in this document is subject to change without notice. The Members of the TAS3 Consortium make no warranty
of any kind with regard to this document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the TAS3 Consortium shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of this material.

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

The TAS3 Consortium

Beneficiary Name Country Short Role
1 K.U. Leuven BE KUL Coordinator
2 Synergetics NV/SA BE SYN Partner
3 University of Kent UK KENT Partner
4 University of Karlsruhe DE KARL Partner
5 Technische Universiteit Eindhoven NL TUE Partner
6 CNR/ISTI IT CNR Partner
7 University of Koblenz-Landau DE UNIKOLD Partner
8 Vrije Universiteit Brussel BE VUB Partner
9 University of Zaragoza ES UNIZAR Partner
10 University of Nottingham UK NOT Partner
11 SAP Research DE SAP S&T Coordn
12 Eifel FR EIF Partner
13 Intalio UK INT Partner
14 Risaris IR RIS Partner
15 Kenteq BE KETQ Partner
16 Oracle UK ORACLE Partner
17 Custodix BE CUS Partner
18 Medisoft NL MEDI Partner
19 Symlabs PT SYM Partner

Disclaimer: This document has not been reviewed or approved by European Comission.

Contributors

Name Organisation
1 Sampo Kellomäki (main contributor) Unaffiliated
2 David Chadwick KENT
3 Brecht Claerhout CUS
4 Jeroen Hoppenbrouwers KUL
5 Tom Kirkham NOT
6 Brendan Van Alsenoy KUL
7 Gang Zhao VUB
8 Gilles Montagnon SAP
9 Brian Reynolds RIS

TAS3_D2p4_Protocols_API_Concrete_Arch Page 2 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Contents

L IST OF FIGURES . 8

EXECUTIVE SUMMARY . 9

1 I NTRODUCTION . 10

1.1 STANDARDIZED WIRE PROTOCOL INTERFACES. 10

1.2 COMPOSITION AND CO-LOCATION OF ARCHITECTURAL COMPONENTS. 11

2 PROTOCOLS AND PROFILES . 12

2.1 SIGNATURE AND ENCRYPTION CONSIDERATIONS. 12

2.2 SUPPORTEDAUTHENTICATION AND LOGIN SYSTEMS. 12

2.2.1 System Entity Authentication. 12

2.2.2 SAML . 12

2.2.3 Proxy IdP Profile. 14

2.2.4 Shibboleth. 14

2.2.5 eID and Other Smart Cards. 14

2.2.6 One-Time-Password Tokens. 14

2.2.7 OpenID. 15

2.2.8 CardSpace / InfoCard and WS-Federation. 15

2.2.9 CA / Netegrity Siteminder Proprietary SSO. 15

2.2.10 Citrix, Sun, and other proprietary SSO. 15

2.2.11 Web Local Login. 15

2.2.12 Desktop Login. 15

2.2.13 Fat Client Login. 16

2.2.14 User Not Present or Batch Operations. 16

2.3 SUPPORTEDIDENTITY WEB SERVICESSYSTEMS . 16

2.3.1 Framework. 17

2.3.2 Liberty ID-WSF Profile. 17

2.3.3 Bare WS-Security Header or Simplified ID-WSF. 18

2.3.4 WS-Trust. 19

2.3.5 RESTful Approach. 19

2.3.6 Message Bus Approach. 19

2.4 AUTHORIZATION SYSTEMS . 19

2.4.1 Authorization Queries. 19

2.4.2 Policy Languages. 19

2.5 TRUST AND SECURITY VOCABULARIES. 20

2.5.1 Levels of Authentication (LoA). 20

2.5.2 Vocabularies for Authorization. 20

2.5.3 Vocabularies for Basic Attributes (PII). 20

TAS3_D2p4_Protocols_API_Concrete_Arch Page 3 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2.5.4 Discovery Vocabularies. 20

2.5.5 Security and Trust Vocabularies. 21

2.5.6 Audit Vocabularies. 21

2.6 REALIZATION OF THE DISCOVERY FUNCTION . 21

2.7 REALIZATION OF THE CREDENTIALS AND PRIVACY NEGOTIATOR FUNCTION 21

2.7.1 Discovery in Credentials and Privacy Negotiation. 21

2.7.2 Frontend Credentials and Privacy Negotiation. 21

2.7.3 Components of Credentials and Privacy Negotiator. 21

2.7.4 Protocol between Service Requester and the Credentials and Privacy Negotiation Agent
24

2.7.5 Protocol between Credentials and Privacy Negotiation Agent and Attribute Aggregator27

2.7.6 Protocol between Credentials and Privacy Negotiation Agent and Service. 27

2.8 USING TRUST SCORING IN DISCOVERY. 27

2.8.1 Specifying Trust Inputs. 27

2.8.2 Returning Trust Scores. 29

2.9 REALIZATION OF THE AUDIT AND DASHBOARD FUNCTION. 29

2.9.1 Audit Event Bus. 29

2.9.2 Audit Event Ontology. 30

2.9.3 Dashboard Function. 30

2.9.4 User Interaction. 30

2.9.5 TAS3 User Interaction Widget. 30

2.10 REALIZATION OF DELEGATION FUNCTION . 31

2.11 ATTRIBUTE AUTHORITIES. 31

2.12 TAS3 SIMPLE OBLIGATIONS LANGUAGE (SOL). 31

2.12.1 SOL1 Query String Attributes. 32

2.12.2 Matching Pledges to Sticky Policies and Obligations. 35

2.12.3 Passing Simple Obligations Dictionaries Around. 36

2.13 REALIZATION OF STICKY POLICIES . 37

2.14 PASSING ADDITIONAL CREDENTIALS IN WEB SERVICE CALL . 38

2.15 UNIFORM APPLICATION STATUS AND ERRORREPORTING. 39

2.15.1 TAS3 Status Header. 39

2.15.2 TAS3 Status Codes. 40

2.15.3 TAS3 Control and Reporting Points. 40

2.16 REGISTRATION OFBUSINESSPROCESSMODELS . 40

3 THE OFFICIAL TAS3 API (NORMATIVE , BUT NON-EXCLUSIVE) 41

3.1 LANGUAGE INDEPENDENTDESCRIPTION OF THEAPI . 41

3.1.1 Single Sign On (SSO) Alternatives. 41

3.1.2 SSO: ret =tas3_sso(conf, qs, auto_flags). 42

3.1.3 Authorization: decision =tas3_az(conf, qs, ses). 44

3.1.4 Authorization base: decision =tas3_az_base(conf, qs, ses). 45

TAS3_D2p4_Protocols_API_Concrete_Arch Page 4 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

3.1.5 Web Service Call: ret_soap =tas3_call(cf, ses, svctype, url, di_opt, az_cred, req_soap)45

3.1.6 Requester out: req_decor_soap =tas3_wsc_prepare_call(cf, ses, svctype, az_cred,
req_soap). 47

3.1.7 Requester in: status =tas3_wsc_valid_resp(cf, ses, az_cred, res_decor_soap). 47

3.1.8 Responder in: tgtnid =tas3_wsp_validate(cf, ses, az_cred, soap_req). 47

3.1.9 Responder out: soap =tas3_wsp_decorate(cf, ses, az_cred, soap_resp). 48

3.1.10 Explicit Discovery: epr =tas3_get_epr(cf, ses, svc, url, di_opt, act, n). 48

3.1.11 url = tas3_get_epr_url(cf, epr). 49

3.1.12 entityid = tas3_get_epr_entid(cf, epr). 49

3.1.13 a7n =tas3_get_epr_a7n(cf, epr). 49

3.1.14 SOAP Fault and Status Generation and Inspection. 49

3.1.15 Delegated Discovery. 50

3.2 JAVA BINDING . 51

3.2.1 Interface and Initialization. 51

3.2.2 Initialize: cf = tas3.new_conf_to_cf(conf). 52

3.2.3 New session: ses =tas3.new_ses(cf). 52

3.2.4 SSO: ret =tas3.sso_cf_ses(cf, qs_len, qs, ses, null, auto_flags). 52

3.2.5 Authorization: decision =tas3.az_cf_ses(cf, qs, ses). 52

3.2.6 WSC: resp_soap =tas3.call(cf, ses, svctype, url, di_opt, az_cred, req_soap). 53

3.2.7 WSP: tgtnid =tas3.wsp_validate(cf, ses, az_cred, soap_req). 53

3.2.8 WSP: soap =tas3.wsp_decorate(cf, ses, az_cred, soap_resp). 53

3.2.9 Explicit Discovery: epr =tas3.get_epr(cf, ses, svc, url, di_opt, act, n). 53

3.2.10 url = tas3.get_epr_url(cf, epr). 54

3.2.11 entityid = tas3.get_epr_entid(cf, epr). 54

3.2.12 a7n =tas3.get_epr_a7n(cf, epr). 54

3.2.13 Available Implementations (Non-normative). 54

3.3 PHP BINDING . 55

3.3.1 Application Level Integration. 55

3.3.2 cf = tas3_new_conf_to_cf(conf). 55

3.3.3 ses =tas3_new_ses(cf). 55

3.3.4 SSO: ret =tas3_sso_cf_ses(cf, -1, qs, ses, null, auto_flags). 55

3.3.5 Authorization: decision =tas3_az_cf_ses(cf, qs, ses). 56

3.3.6 WSC: resp_soap =tas3_call(cf, ses, svctype, url, di_opt, az_cred, req_soap). 56

3.3.7 WSP: tgtnid =tas3_wsp_validate(cf, ses, az_cred, soap_req). 57

3.3.8 WSP: soap =tas3_wsp_decorate(cf, ses, az_cred, soap_resp). 57

3.3.9 Explicit Discovery: epr =tas3_get_epr(cf, ses, svc, url, di_opt, act, n). 57

3.3.10 url = tas3_get_epr_url(cf, epr). 57

3.3.11 entityid = tas3_get_epr_entid(cf, epr). 58

3.3.12 a7n =tas3_get_epr_a7n(cf, epr). 58

3.3.13 Available Implementations (Non-normative). 58

TAS3_D2p4_Protocols_API_Concrete_Arch Page 5 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

3.4 C AND C++ BINDING . 59

3.4.1 cf = tas3_new_conf_to_cf(conf). 59

3.4.2 ses =tas3_new_ses(cf). 59

3.4.3 SSO: ret = tas3_sso_cf_ses(cf, qs_len, qs, ses, &res_len, auto_flags). 59

3.4.4 Authorization: decision =tas3_az_cf_ses(cf, qs, ses). 60

3.4.5 WSC: resp_soap =tas3_call(cf, ses, svctype, url, di_opt, az_cred, req_soap). 60

3.4.6 resp_soap = tas3_callf(cf, ses, svctype, url, di_opt, az_cred, fmt, ...). 61

3.4.7 WSP: tgtnid =tas3_wsp_validate(cf, ses, az_cred, soap_req). 61

3.4.8 WSP: soap =tas3_wsp_decorate(cf, ses, az_cred, soap_resp). 62

3.4.9 WSP: soap = tas3_wsp_decoratef(cf, ses, az_cred, fmt, ...). 62

3.4.10 Explicit Discovery: epr =tas3_get_epr(cf, ses, svc, url, di_opt, act, n). 62

3.4.11 url = tas3_get_epr_url(cf, epr). 63

3.4.12 entityid = tas3_get_epr_entid(cf, epr). 63

3.4.13 a7n =tas3_get_epr_a7n(cf, epr). 63

3.4.14 Available Implementations (Non-normative). 63

3.5 OTHER LANGUAGE BINDINGS . 64

4 DEPLOYMENT AND I NTEGRATION M ODELS (NON-NORMATIVE). 65

4.1 FRONTEND AND WEB SERVICESCLIENT INTEGRATION MODEL (NON-NORMATIVE). . . 65

4.1.1 Integration Using ZXID (Non-normative). 66

4.1.2 Integration Using Other Platforms, Frameworks, and Packages (Non-normative). 68

4.2 WEB SERVICESPROVIDER INTEGRATION MODEL (NON-NORMATIVE). 68

5 RESILIENT DEPLOYMENT ARCHITECTURE (NON-NORMATIVE) 69

5.1 ZERO DOWNTIME UPDATES . 70

6 FEASIBILITY AND PERFORMANCE ANALYSIS (NON-NORMATIVE) 71

6.1 SINGLE USE OF SINGLE WEB SERVICE. 72

6.1.1 Cost without auditing. 73

6.1.2 Cost without auditing and without authorization. 73

6.1.3 Cost without XML. 74

6.2 SESSION OF3 FRONTENDS AND FIVE WEB SERVICES. 74

7 BEST PRACTISES . 77

8 ANNEX A: E XAMPLES . 78

8.1 SAML 2.0 ARTIFACT RESPONSE WITHSAML 2.0 SSO ASSERTION ANDTWO BOOT-
STRAPS . 78

8.2 ID-WSF 2.0 CALL WITH X509V3 SEC MECH . 81

8.3 ID-WSF 2.0 CALL WITH BEARER (BINARY) SEC MECH . 82

8.4 ID-WSF 2.0 CALL WITH BEARER (SAML) SEC MECH . 83

TAS3_D2p4_Protocols_API_Concrete_Arch Page 6 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

9 ANNEX B: T ECHNICAL SELF ASSESSMENTQUESTIONNAIRE . 86

9.1 OVERVIEW AND SCOPE. 86

9.2 SYSTEM ENTITY CREDENTIALS AND PRIVATE KEYS. 87

9.3 TRUST MANAGEMENT . 88

9.4 THREAT AND RISK ASSESSMENTS. 89

9.5 SERVICE PROVIDER QUESTIONS . 89

9.5.1 Front End (FE) Single Sign-On Questions. 89

9.5.2 Web Service Provider (WSP) Questions. 90

9.5.3 Attribute Authority Questions. 91

9.5.4 Web Service Client (WSC) Questions. 92

9.6 SINGLE SIGN-ON IDENTITY PROVIDER (IDP), DISCOVERYSERVICE, DISCOVERYREG-
ISTRY, IDENTITY MAPPER, OR DELEGATION SERVICE QUESTIONS . 93

9.6.1 Identity Provider Questions. 93

9.6.2 Discovery Service Questions. 94

9.7 ANY OTHER ARCHITECTURAL ROLE . 94

TAS3_D2p4_Protocols_API_Concrete_Arch Page 7 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

List of Figures

Figure 2.1: Liberty Alliance Architecture.. 18

Figure 2.2: Hierarchy of policies. 20

Figure 2.3: Credentials and Privacy Negotiation and Discovery steps. 22

Figure 2.4: A deployment architecture for Credentials and Privacy Negotiation and Discovery. 23

Figure 2.5: Credentials and Privacy Negotiation Components. 23

Figure 2.6: Credentials and Privacy Negotiation optimized flow. 24

Figure 4.1: A deployment architecture for SSO and web service call.. 65

Figure 4.2: API and modules for SSO and web service call.. 67

Figure 4.3: ZXID specific API and modules for SSO and web service call.. 67

Figure 5.1: Layering of resilience features for Front Channel, Back Channel, and data center Back End
services.. 69

Figure 5.2: Resiliency implemented using hardware load balancers.. 69

Figure 5.3: Resiliency implemented using software load-balancing-fail-over functionality and clustering.. . . 70

Keyword List
Architecture, Protocol, Implementation, API, Security, Trust, Privacy1

TAS3_D2p4_Protocols_API_Concrete_Arch Page 8 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2

Protocols and Concrete Architecture Executive Summary3

This document specifies a set of protocol level interoperability profiles, usually leveraging open stan-4

dards, deployment scenarios, APIs, and other considerations that constitute the official way to deploy5

version 1 of TAS3 architecture, see [?]. The purpose of defining these specifics is to enable multiple6

independent implementations of TAS3 to be wire protocol interoperable (and to limited extent also API7

interoperable). TAS3 reference implementation and reference deployment will behave essentially as de-8

scribed in this document.9

The TAS3 architecture is designed to be standards, protocol, data and application agnostic so that any10

protocol capable of implementing the flows and satisfying the service requirements can potentially be11

used by any application. However, to build practical systems, different components, possibly from differ-12

ent sources, must speak the same protocols, hence TAS3 provides this profile that allows interoperability at13

the level of Single Sign-On, Web Service Discovery, Web Service Call, and Authorization. The standard-14

ized profile provides the scaffolding where plurality of trust and privacy negotiation mechanisms, policy15

languages, obligations and other value added features can exist.16

The TAS3 API is designed to allow an application programmer to understand how simple it is to "TAS3
17

enable" his application. It is noteworthy that using the API does not require any in-depth knowledge of18

the underlying standards, protocols, and profiles, or indeed even of the TAS3 Architecture itself. All these19

details are taken care of by the API implementation, supplied commercially or in open source. The TAS3
20

Reference Implementation will be one such API implementation. The APIs will be available in all popular21

programming languages and platforms.22

The simplicity of the API is due to a coherent integration model that shows how the steps from SSO and23

Authorization all the way to the web service calls work together and are able to pass necessary credentials24

and tokens "behind the scenes" by the use of session and other state information. Many design parameters25

that could have been handled by yet another argument to the API functions, are in fact handled by con-26

figuration file, with sensible default values, and automated discovery, trust negotiation, and trust network27

business processes.28

The split between explicit arguments, configurability, and automated processes has been guided by29

division of concerns between the application programmer and the systems administrator. When automatic30

mechanisms are used, appropriate manual control point exists elsewhere in the architecture, e.g. automated31

discovery is kept in check with explicit authorization.32

We provide guidance regarding possible integration and deployment scenarios and illustrate how TAS3
33

Architecture can be deployed in a resilient and redundant way.34

Neither this document nor the TAS3 Architecture [?] mandate use of a particular deployment or soft-35

ware architecture (although the integration scenarios suggest a recommended one), implementers are free36

to organize their software and deployment in other ways as long as the wire protocol compatibility is main-37

tained and all signature generation and validation steps, as well as trust determinations, and authorizations38

are implemented.39

The Annex gives some example protocol messages.40

TAS3_D2p4_Protocols_API_Concrete_Arch Page 9 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

41

1 Introduction42

This document describes the TAS3 Concrete Architecture and protocol choices in a normative and pre-43

scriptive way. It also describes the official, but not exclusive, TAS3 API generically and for selected pro-44

gramming language bindings. Any implementation or deployment claiming "TAS3" compliance MUST45

abide by this document as well as [?], and [?]. A deployment usually has to satisfy, as well, requirements46

of the Trust Operator’s, see [?], Governance Agreement and certification procedures, some of which con-47

cern the software implementation and others the deployment’s organizational properties. Use of TAS3
48

brand is governed by a separate TAS3 Brand Agreement.49

This document uses the keywords (e.g. MUST, SHOULD) of [?]. All text is normative unless ex-50

pressly identified as non-normative. Prose and specification has precedence over examples. In general51

the examples should not be assumed normative unless no normative specification for the subject matter is52

available.53

This architecture, and related documents are copyrighted works of TAS3 Consortium, as dated. All54

Rights Reserved. This architecture, and related documents, are versioned and subject to change without55

notice. No warranty or guarantee is given. This architecture, and related specifications can be implemented56

on Royalty Free terms by anyone. However, no warranty regarding IPR infringement is given. For further57

details, please see [?].5859

1.1 Standardized Wire Protocol Interfaces60

TAS3 emphasizes wire protocol interoperability in following key areas61

1. Single Sign-On (SSO) and Single Logout (SLO)62

2. Authorization request-response63

3. ID Mapping and Discovery64

4. Web service call65

5. Audit bus reporting and audit trail querying66

6. Delegation67

7. Metadata, registrations, declarations of attribute needs, declarations of attribute availability68

In some areas TAS3 recognizes interoperability need, but leaves it up to the business processes, adaptive69

techniques, and involved parties to agree specific means. These include70

• Policy and obligations languages and vocabularies (although we suggest XACML and SOL1, see71

section2.12, as one alternative, supported by the reference implementation)72

• Trust and Privacy Negotiation protocol and metrics or scores (although we suggest TrustBuilder and73

some XACML extensions, see section??)74

• Application ("payload") protocols and data formats75

• Format of the local audit trail76

• Business Process Modelling techniques and languages77

TAS3 recognizes the usefulness of a consistent user experience, e.g. in Dashboard, SSO, consent, trust78

and privacy negotiation, policy editing, etc., but this document does not attempt to prescribe these aspects.79

TAS3_D2p4_Protocols_API_Concrete_Arch Page 10 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

80

1.2 Composition and Co-location of Architectural Components81

This section addresses Req.D1.2-3.8-Separate, D1.2-2.24-NoPanopt, D1.2-6.80-Separate.82

When implementing practical systems, it often turns out that many of the architecturally designed boxes83

are in fact implementable by one software module. For example, with reference to Fig-2.3 of [?], it is84

clear that a software module called "Service Requester" may exist, realizing Rq-PEP-Out, Rq-PEP-In,85

and Stack components all together without them being necessarily separable. Such composition does not86

harm interoperability as those submodules of Service Requester were always meant to be part of the same87

process and to communicate via function call interfaces. Indeed, the official TAS3 API, see section3,88

lumps all these in one function call:tas3_call(). However all external interfaces fromtas3_call(), such as89

authorization, discovery, and web service call, do speak standard protocols as profiled in this document.90

It is ok for an implementation to compose, as an optimization, components that were meant to be wire91

protocol interfaces (see section1.1), e.g. reach authorization by function call interface instead of XACML,92

as long as the implementation makes the same interface available over-the-wire by a mere configuration93

change (no recompile required/allowed).94

From protocol perspectiveco-locationof services (having two distinct service processes running on the95

same server hardware, or even running as separate processes under the same web server) does not present96

any problem, save for the complications of using nonstandard TCP/IP ports or requirement of configuring97

multiple IP addresses to same host.98

From risk management and excessive visibility, or fat target, perspective, seeT161-Panopticonthreat99

in [?], some services clearly should not be co-located. Division of responsibilities becomes important100

here and any two roles played by one system entity where they are co-located must not have a conflict of101

interest. In particular, the following are incompatible for co-location102

• anything vs. Audit103

• SP vs. IdP (some exceptions apply)104

• SP vs. ID Mapping and Discovery105

• SP vs. Delegation106

• IdP vs. Authorization (some exceptions apply)107

Some services can be safely co-located, and often are:108

• IdP often includes Attribute Authority, ID Mapping, Discovery, and fat client Authentication Ser-109

vice. Although an IdP should not pretend to be a Policy Enforcement Point, it is clear that an IdP110

can exert such control by refusing to issue tokens that are necessary for functioning of the rest of111

the architecture.112

• SP and PEP are natural partners, indeed different facets of the same process113

TAS3_D2p4_Protocols_API_Concrete_Arch Page 11 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

114

2 Protocols and Profiles115

To complement the specification of protocols here, the reader may want to consult Fig-8.18 in [?] for116

an overview of the functionality available in various specifications.117

The choice of protocols has been guided by commitment to open standards as recommended in section118

2 of [?]. This also serves to address Reqs.D1.2-2.4-MultiVendor, D1.2-2.5-Platform, andD1.2-2.6-Lang.119120

2.1 Signature and Encryption Considerations121

1. When applying XML Encryption [?], e.g. in EncryptedAssertion, EncryptedID, or EncryptedAttribute,122

the nested method of key conveyance MUST be used, i.e. key is carried inEncryptedAssertion/EncryptedData/KeyInfo/EncryptedKey.123

The sibling method that usesEncryptedAssertion/EncryptedKey MUST NOT be used.124

2. When applying [?], the InclusiveNamespaces/@PrefixList MUST NOT contain prefixes that are not125

defined in the XML document.126

127

2.2 Supported Authentication and Login Systems128

This section addresses Reqs.D1.2-2.18-AnCredi, D1.2-6.12-Sec, D1.2-7.3-An, D1.2-7.10-Target, D1.2-129

9.3-SSO.130131

2.2.1 System Entity Authentication132

TAS3 adopts X.509v3 public key certificates as primary means of authenticating system entities. This133

will apply over TLS and ClientTLS connections and may also apply in digital signatures.134

For bilateral authentication Client TLS MUST be supported. HTTP Basic authentication MAY be135

supported.136137

2.2.2 SAML138

Given the already broad adoption of SAML 2.0 by the eGovernment and academic commu-139

nities across the world (e.g. DK, NZ, FI, etc.), this choice is effectively already made for us.140

By choosing SAML 2.0 we enable many existing eGovernment and academic projects easily141

to become TAS3 compliant in future.142

1. TAS3 adopts SAML 2.0 Assertions, see [?], as primary and recommended token format. Alternatives143

such as SAML 1.1 or Simple Web Token (SWT) [?] were considered either obsolete or not yet mature.144

In future we may consider supporting SWT and X509 attribute certificates as token format. This will145

become especially relevant when architecture is extended to support RESTful services approaches.146

2. TAS3 adopts SAML 2.0 as primary and RECOMMENDED SSO system, see [?]. (Req. D1.2-3.10-147

JITPerm)148

3. TAS3 RECOMMENDS that SAML 2.0 implementations are Liberty Alliance Certified.149

4. SAML 1.0, 1.1 [?], 1.2, as well as Liberty ID-FF 1.2 [?] MAY be supported150

5. Redirect - POST SSO profile MUST be supported by all front channel participants, see [?] and [?].151

6. Redirect - Artifact - SOAP SSO profile MUST be supported in IdP and SHOULD be supported in Front152

End (SP), see [?] and [?].153

7. Redirect Single Logout Profile MUST be supported, see [?] and [?].154

8. IdP Extended Profile, see [?], namely IdP Proxying, MUST be supported155

9. Other SAML profiles MAY be supported156

TAS3_D2p4_Protocols_API_Concrete_Arch Page 12 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

10. SAML metadata MUST be supported, see [?]157

11. Well Known Location (WKL) method of metadata publishing MUST be supported, see [?] section158

4.1 "Publication and Resolution via Well-Known Location", p.29, for normative description of this159

method. Support for WKL method for metadata acquisition is RECOMMENDED.160

N.B. Publishing metadata using WKL at its most basic form is as simple as placing a (hand161

edited) metadata file in the web root at the place referenced by the EntityID of the site.162

Many software packages handle this automatically and may even generate the metadata163

dynamically, on the fly.164

12. In redirect binding [?] deflate compression MUST be used. [?] format MUST NOT be used.165

166

2.2.2.1 Authentication Request167

1. MUST useNameIDPolicy/@Format of Persistent ("urn:oasis:names:tc:SAML:2.0:nameid-format:persistent")168

when implementing Pull Model (Req.D1.2-7.8-NoColl).169

2. MUST useNameIDPolicy/@Format of Transient ("urn:oasis:names:tc:SAML:2.0:nameid-format:transient")170

when implementing Linking Service model.171

3. MUST setNameIDPolicy/@SPNameQualifier172

4. MUST setNameIDPolicy/@AllowCreate flag at all times true173

5. SHOULD not setIsPassive flag (in some cases there may be justified reasons to do otherwise)174

6. MUST useAssertionConsumerServiceIndex175

7. MUST NOT useProtocolBinding or AssertionConsumerServiceURL176

8. Step-up authentication, using Authentication Context Class References MUST be supported.177

9. SHOULD useAttributeConsumingServiceIndex attribute, which refers to a section of the meta-178

data, as way of selecting the attributes that are returned in the authentication response. Reader should179

be aware that new proposals for solving this issue more dynamically have been submitted to OASIS180

Security Services Technical Committee, e.g. [?]. It should also be noted that the returned attributes are181

always at discretion of the IdP.182

183

2.2.2.2 Authentication Response184

The authentication request will be responded with an assertion that satisfies following:185

1. MUST contain<sa:AuthnStatement>186

2. MUST specify the Level of Authentication asAuthnStatement/AuthnContext/AuthnContextClassRef.187

3. MUST use the LoA profile [?] to return LoA to the SP.188

4. SHOULD haveAudienceRestriction/Audience element referencing the SP.189

5. MAY contain <AttributeStatement> detailing user’s attributes as relevant to SP and/or requested190

using AttributeConsumingServiceIndex.191

6. SHOULD have an<AttributeStatement> containing a discovery bootstrap (attribute named "urn:liberty:disco:2006-192

08:DiscoveryEPR" whose value is an endpoint reference) as described in [?] section 4 "Discovery193

Service ID-WSF EPR conveyed via a Security Token".194

TAS3_D2p4_Protocols_API_Concrete_Arch Page 13 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

7. MAY have additional Attribute Statements conveying other endpoint references. Rather than providing195

additional EPRs at SSO, using discovery is RECOMMENDED. If additional EPRs are passed, the196

attributes SHOULD be named "urn:liberty:disco:2006-08:DiscoveryEPR" even if they do not refer197

to discovery service. The SP, when seeing "urn:liberty:disco:2006-08:DiscoveryEPR" attribute MUST198

look at theAttribute/AttributeValue/EndpointReference/Metadata/ServiceType element to199

determine the type of the end point reference. The SP SHOULD consider any attribute whose value is200

an<a:EndpointReference> to be a bootstrap.201

202

2.2.3 Proxy IdP Profile203

To adapt non-TAS3 IdPs to TAS3 environment, the strategy of using SAML2 Proxy IdP profile is rec-204

ommended. The TAS3 SP redirects the use to a TAS3 enabledproxy IdP(aka "middle IdP"), which then205

offers the user a choice of actual (non-TAS3) IdP to use and plays the SAML SP role towards that IdP.206

When the user has been authenticated, the assertion is returned to the middle IdP, which will use infor-207

mation in it to mint an assertion that is returned to the TAS3 enabled SP. The TAS3 assertion SHOULD208

contain the attributes of the original assertion. It MAY contain the original assertion as well, if audience209

restriction permits this.210

The Proxy IdP Profile can also used for facilitation of interoperation across trust networks. SPs in one211

trust network use the IdP in their home trust network, which then contacts the foreign IdP. This way only212

the home trust network’s IdP needs to have trust relationship with the foreign IdP. This is much more213

scalable than each SP having to trust directly the foreing IdPs. See [?] for further discussion.214

The Proxy IdP Profile is described [?] section3.4.1.5 "Proxying" (pp.54-55) and also in [?] section215

3.3.1 IdP Proxy Feature (pp.11-12), as well as in [?] Step D (p.17-19) associated with "IdP Extended" and216

"SP Extended" conformance modes.217218

2.2.4 Shibboleth219

Shibboleth MAY be supported. Shibboleth based on SAML 2.0 is RECOMMENDED. Supporting220

Shibboleth enables higher education institutions to adopt TAS3 with minimal reconfiguration and rein-221

vestment.222

Shibboleth does not currently (2009) support Single Logout. As a condition of TAS3 compliance, such223

support should be added (please contribute any such work to the Shibboleth open source implementation224

so that this caveat can be deleted). However, a TAS3 compliant Trust Network may waive this requirement225

after analysis of the impact and a pondered decision (i.e. its easier to implement it than to get lawyers to226

agree).227

Shibboleth does not officially support Well Known Location method of metadata publication, but any228

Shibboleth deployment can satisfy this requirement by simply hand crafting a metadata file and making it229

available on their web server at the EntityID URL.230

We have not fully validated all use cases with Shibboleth. Specific points of contention include lack of231

full user identification, e.g. statement that User is a student or staff member of university, without giving232

out a persistent pseudonym. While a valid approach that better protects the user’s privacy than the use of233

a persistent ID, it may not be able to address all the use cases, especially in the commercial world where234

service providers wish to link a user’s requests together.235236

2.2.5 eID and Other Smart Cards237

European eID cards and other smart cards are supported as an authentication method available at SAML238

2.0 IdP.239240

2.2.6 One-Time-Password Tokens241

One-Time-Password Tokens, such as RSA Tokens or Yubikey, are supported as an authentication meth-242

ods available at SAML 2.0 IdP.243

TAS3_D2p4_Protocols_API_Concrete_Arch Page 14 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

244

2.2.7 OpenID245

OpenID [?] MAY be supported. If supported, OpenID 2.0 MUST be used as earlier versions have246

known security flaws.247

It should be noted that OpenID’s globally unique identifier model does not provide privacy protection.248

We have not validated whether it is possible to implement TAS3 architecture using OpenID. One specific249

point of uncertainty is passing the IM bootstrap token at SSO time. No native OpenID mechanism is250

known to exist (standardized; ad-hoc approaches are known). One suggestion, applicable to the RESTful251

binding would be to use OAUTH.252253

2.2.8 CardSpace / InfoCard and WS-Federation254

Card Space MAY be supported. If supported, at least SAML 2.0 token format MUST be supported.255

The token MUST also support passing IM / Discovery bootstrap token.256257

2.2.9 CA / Netegrity Siteminder Proprietary SSO258

Siteminder MAY be supported. However, we have not validated whether it is possible to implement259

TAS3 architecture using Siteminder. Prospects do not look particularly good as the Siteminder protocol260

and product can not easily be configured to convey the IM bootstrap token. However, the same vendor261

sells a SAML2 solution, so ask for that instead.262

• Not standards compliant, but by far the most relevant player on the market263

264

2.2.10 Citrix, Sun, and other proprietary SSO265

MAY be supported. However, we have not validated whether it is possible to implement TAS3 archi-266

tecture using these.267268

2.2.11 Web Local Login269

We have not validated whether it is possible to implement TAS3 architecture using local login approach.270

The local login approach has many problems, including271

• Each site has separate login so more burden to the user272

• Users are lazy and use same password on many sites, thus allowing the sites to impersonate (mas-273

querade) their users towards other sites.274

• Local logins require local effort to support new better authentication methods.275

• Local logins necessitate local user database maintenance276

• Local logins require password resets to be handled locally277

If you must do local login, we recommend using one-time-passwords and the Authentication Service278

Protocol [?] to validate the authentication centrally using an IdP.279280

2.2.12 Desktop Login281

We have not validated whether it is possible to implement TAS3 architecture using desktop login ap-282

proach. We recommend using one-time-passwords and the Authentication Service Protocol [?] to validate283

the authentication centrally using an IdP.284

• Terminal servers: Mind-The-Box, Citrix, Windows TS, etc.285

TAS3_D2p4_Protocols_API_Concrete_Arch Page 15 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

• Active Directory PDC286

A backup plan would be to capture the authentication at LDAP or Active Directory level and make the287

Authentication Service call from this middleware.288

The Desktop login approach suffers from similar security problems as the Fat Client Login, which see289

below.290291

2.2.13 Fat Client Login292

"Fat Client" refers to any non web browser client, e.g. email reading program (as opposed to web mail)293

or GUI form filling application (as opposed to web GUI). Fat Client scenario often arises with embedded294

systems, such as medical devices that need to talk to TAS3 network.295

The main security problem in Fat Client Login is that the fat client itself becomes an intermediary to296

the authentication process, handling sensitive credentials. Some notion of Trusted Computing Path may297

help to address verifying that the fat client is not compromised.298

We recommend using one-time-passwords and the Authentication Service Protocol [?] to validate the299

authentication centrally using an IdP. One-time-passwords effectively solve the intermediary problem.300

If Fat Client Login is a requirement, Liberty Advanced Client approach, see [?] and [?], SHOULD be301

used.302303

2.2.14 User Not Present or Batch Operations304

TAS3 specifies some approaches for doing this, see [?], mainly based on using advanced authorization305

to obtain discovery token without authenticating the User. Liberty Advanced Client approach, see [?] and306

[?], SHOULD be used.307308

2.3 Supported Identity Web Services Systems309

The web services must satisfy some technical requirements310

• Messages MUST be correlated, so each response is bound to request in an auditable way311

- Message ID correlation312

- Business Process Model and Instance IDs (or context or instance) to allow overarching correla-313

tion of several request-response pairs (e.g. to avoid actors who would have conflicts of interest314

overall that might not be identified when only working at level of individual request-response315

pairs)316

- PDP can receive this easy enough as an environment parameter and this is needed to317

support dynamic separation of duties318

- Gap: business process modelling does not express this?319

- Consider URL format hierarchical ID320

- Better typed, like LDAP DN format, or query string321

• Requester and Responder MUST be identified (Req 10.4)322

• Synchronous web service calls MUST be supported323

• Asynchronous calls SHOULD be supported where needed. Business Process Engines will handle324

asynchrony.325

• Subscribe - Notify mechanism SHOULD be supported where needed326

- subscription for events will be vital to pick up errors and notify of events like break the glass327

- subscribe and publish ws-eventing328

TAS3_D2p4_Protocols_API_Concrete_Arch Page 16 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

- Event bus as a subscribe and publish mechanism329

• Maximum availability and use digital signature and encryption technologies, i.e. technical solutions330

to security and trust problems.331

332

2.3.1 Framework333

1. MUST support SOAP 1.2334

2. MUST support XML-DSIG [?], a.k.a. RFC3275. In future we may introduce simpler schemes like335

Simple Web Token [?]. Using TLS connection stream as an audit trail element is impractical due336

to volume and inability of implementations to capture it. TLS stream as audit trail may also lead to337

inadvertent collateral disclosure.338

3. MUST support Exclusive XML Canonicalization [?] for purposed of [?].339

4. MAY support simple sign [?]. In future we will support Simple Web Token [?] which is very similar340

to simple sign.341

5. MUST support XML-Enc [?] for protection of NameIDs and attributes, including bootstraps, as well342

as assertions, against an active intermediary. The common case in question is a SP that is about to343

make a web service call. To make such call, the SP must obtain from the discovery service a token that344

is passed to the web service provider. XML-Enc support allows the discovery service to pass in the345

encrypted token the pseudonym, and potentially some sensitive attributes, to the web service provider346

without the intermediary, SP in this case, being able to snoop on this confidential information. This347

case can not be solved using TLS alone as TLS is point-to-point and for this case TAS3 architecture348

necessarily specifies an active intermediary.349

350

2.3.2 Liberty ID-WSF Profile351

1. MUST support ID-WSF 2.0 SOAP Binding [?] (this document is highly recommended reading).352

2. MAY support ID-WSF 1.2353

3. An implementation MUST support the following sec mechs, see [?]:354

- "urn:liberty:security:2005-02:TLS:Bearer"355

- "urn:liberty:security:2006-08:TLS:SAMLV2" (Holder-of-Key, HoK)356

A deployment MAY, as a configuration option, choose either.357

4. MAY support following sec mechs for testing, but MUST NOT permit their use in production environ-358

ments:359

- "urn:liberty:security:2005-02:null:Bearer"360

- "urn:liberty:security:2006-08:null:SAMLV2" (Holder-of-Key, HoK)361

5. MAY support other TLS [?] based sec mechs, including ClientTLS.362

6. MUST NOT permit non-TLS sec mechs in production environments363

7. Implementations SHOULD be Liberty Alliance certified, see [?].364

8. Implementations MUST support<ProcessingContext> "urn:liberty:sb:2003-08:ProcessingContext:Simulate"365

SOAP header and implement a "dry-run" feature using it. A deployment MAY, as a configuration op-366

tion, enable this feature. Partially satisfies Reqs.D1.2-12.13-VfyandD1.2-12.16-OnlineTst.367

TAS3_D2p4_Protocols_API_Concrete_Arch Page 17 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

9. An implementation MUST support a health check feature. We RECOMMEND that the health check368

uses the "dry-run" feature mentioned in the previous item.369

10. <sbf:Framework> SOAP header MUST be supplied and MUST have version XML attribute with370

value "2.0"371

11. <wsse:Security> SOAP header MUST be supplied372

12. <wsu:TimeStamp> MUST be included in the<wsse:Security> SOAP header.373

13. <a:MessageID> SOAP header MUST be included in all messages.374

14. <a:RelatesTo> SOAP header MUST be included in all responses, unless response is an unsolicited375

(spontaneous, without request) response. Including<a:RelatesTo> is especially important from audit376

trail perspective so that pledges in the request can be linked to the data and obligations delivered in the377

response. This rule satisfies message correlation requirement. This rule upgrades the SHOULD of [?],378

p.23, ll.818-822, to MUST.379

15. <a:ReplyTo>SOAP header MUST be included in all requests and MUST have valuehttp://www.w3.org/2005/03/addressing/role/anonymous380

16. <a:FaultTo> SOAP header MUST NOT be supplied. All faults are sent to<a:ReplyTo> address, i.e.381

in the same HTTP request-response pair.382

17. <b:Sender> SOAP header MUST be included in each web service message. [?] section 5.9, pp.21-22,383

is vague about when this is needed. To simplify matters we make it always mandatory.1
384

18. Request-Response message exchange patterm MUST be supported.385

Liberty specifications build on existing standards
(SAML, SOAP, WS-Addressing, WS-Security, XML, etc.)

Liberty
Federation
Framework

ID-FF
SAML 2.0

Liberty Identity Service Interface
Specifications (ID-SIS)

Liberty Web Services
Framework (ID-WSF)

Enables identity federation
and management through

features such as
identity/account linkage
Simplified Sign-On, and

simple session
management.

Enables interoperable identity services such as
personal identity profile, contact book,

 presence, and so on

Provides the framework for building interoperable
identity services, permissions based attribute

sharing, identity service description and discovery,
and the associated security profiles.

Figure 2.1:Liberty Alliance Architecture.
386

2.3.3 Bare WS-Security Header or Simplified ID-WSF387

1. SHOULD NOT use, as many important security features such as message correlation, replay detection,388

and identification of endpoints are not supported by this mechanism.389

2. Document resultant limitations if not implementing full ID-WSF.390

1If HoK sec mech is used, the sender can generally be inferred even without this header and some implementations of ID-WSF
2.0 actually do this. However, this has caused interoperability problems, hence TAS3 tightens the rule.

TAS3_D2p4_Protocols_API_Concrete_Arch Page 18 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

391

2.3.4 WS-Trust392

• MAY support [?] in general, but MUST support if deploying the particular case of accessing external393

Credential Validation Service, per [?]394

We have not validated whether it is possible to implement TAS3 architecture using WS-Trust. Clearly395

WS-Trust can be used as a token exchange protocol, but for this to be interoperable heavy profiling is396

needed. Users and advocates of WS-Trust should undertake to write such profile.397398

2.3.5 RESTful Approach399

MAY support. We RECOMMEND support on basis of OAuth [?] and OAuth WRAP [?], but imple-400

menters should take in account security advisories published onoauth.net web site. OAuth WRAP is401

still immature as of this writing (Nov. 2009) and can not be recommended for production use.402

We have not validated whether it is possible to implement TAS3 architecture using RESTful approach.403

RESTful enablement is nice to have, but should not compromise elegance of the SOAP solution and404

may be less capable (i.e. it is enough that the RESTful approach solves front channel use cases). RESTful405

approach may support more economical token formats such as Simple Web Token (SWT) [?].406

TAS3 project plans to address RESTful binding in future work during 2010.407408

2.3.6 Message Bus Approach409

We see deploying TAS3 services on message bus architecture as feasible. This will be investigated in a410

future iteration of this deliverable.411412

2.4 Authorization Systems413

This section addresses Reqs.D1.2-2.19-AzCrediandD1.2-2.20-Az.414

Authorization systems are extensively covered in [?].415416

2.4.1 Authorization Queries417

1. MUST support XACML 2.0 [?] request-response contexts for authorization queries418

2. MAY support other versions of XACML419

3. MAY support XACML policy language420

4. MUST support XACML SAML Authorization Query extension [?] in order to allow policies to be421

dynamically passed to the PDP422

All communication between the PEP and PDP will be using SOAP based XACML SAML profile. This423

profile is mostly independent of rules language. Thus the PERMIS and trust and reputation language424

specificity will be mostly contained within the PDPs themselves. The only exception is the obligation425

vocabulary which must be understood by the distributed Obligations Services and therefore needs to be426

standardised. This is a major effort that has already been started in the TAS3 project. On the other hand,427

the sticky policies, which will be passed over the wire in the protocol exchange, will be engineered such428

that they transparently pass from the data store to the appropriate field of the XACML request without the429

PEP proper really having to understand them.430431

2.4.2 Policy Languages432

TAS3 does not mandate any specific policy language. However, consider following possibilities:433

1. PDP SHOULD support XACML 2.0 policy language [?]434

TAS3_D2p4_Protocols_API_Concrete_Arch Page 19 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2. PDP MAY support PERMIS 5.0 policy language435

3. PDP MAY support P3P policy language436

4. PDP MAY support PrimeLife privacy policies437

5. PEP, PDP, and Obligations Service MAY support SOL1, see section2.12, for obligations438

6. CVS MAY support PERMIS Policy CVS Schema (cf. [?] Appendix 2)439

authorization_policy

access_control_policycredential_validation_policy

permission_attribute_assignmentuser_role_assignment

collaboration_policy

role_mapping_policy

conflict_resolution_policy sticky_policy

Figure 2.2:Hierarchy of policies
440

2.5 Trust and Security Vocabularies441

Usage of ontologies in TAS3 is thoroughly addressed in [?], which will map some of these vocabularies.442443

2.5.1 Levels of Authentication (LoA)444

TAS3 recommends the use of the NIST 4 levels of assurance as described in [?] and profiled in [?].445

TAS3 is working on determining whether and how to support LoA schemes of various European coun-446

tries.447448

2.5.2 Vocabularies for Authorization449

Some work has been done in RADIUS [?] and Diameter [?].450

[?] is mainly about authentication, but authorization is also touched.451

This section will be expanded in a future version of this document.452453

2.5.3 Vocabularies for Basic Attributes (PII)454

Use of following vocabularies of PII is RECOMMENDED:455

• LDAP inetOrgPerson [?]456

• Liberty Personal Profile specification [?]457

• X.500 standards, such as [?] and [?]. See also [?].458

This section will be expanded in a future version of this document.459460

2.5.4 Discovery Vocabularies461

Main vocabulary for discovery is the Service Type taxonomy described in [?]. This taxonomy is com-462

plemented by discovery options that further describe the service. This vocabulary SHOULD be used when463

applicable.464

Each Liberty service specifies its own Service Type value as well as a number discovery options. For465

example, see [?], [?], or [?].466

This section will be expanded in a future version of this document.467

TAS3_D2p4_Protocols_API_Concrete_Arch Page 20 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

468

2.5.5 Security and Trust Vocabularies469

See [?] and [?] for a vocabulary of security mechanisms that MUST be used when applicable.470

This section will be expanded in a future version of this document.471472

2.5.6 Audit Vocabularies473

Audit events from RADIUS [?] and Diameter [?] are RECOMMENDED for use where applicable.474

This section will be expanded in a future version of this document. As audit is active research topic, we475

benefit from the research during the TAS3 project to specify this section in detail in the final version of476

thie document.477

Specific Use of XDAS Fields478

Specific Use of XDAS Event Numbers (really event codes)479480

2.6 Realization of the Discovery Function481

• MUST support Liberty ID-WSF 2.0 Discovery Service specification [?]482

• MAY support [?]483

• MAY support UDDI, however this may require significant extensions to UDDI. Such extensions484

would need to be profiled.485

See [?], section 5.4 "The Overview-Model", fig 18, for a view of the interaction between service reg-486

istration and service discovery. Unfortunately the referred document fails to recognize the need for per-487

identity service registrations, unless the oblique reference, where no difference is made between service488

requester entity and the data subject, in section 5.4.4 "Service Discovery", counts.489490

2.7 Realization of the Credentials and Privacy Negotiator Function491

Credentials and Policy Negotiation generally takes authentication and identification of all parties for492

granted, but then computes a trust score which typically governs the access control decisions.493494

2.7.1 Discovery in Credentials and Privacy Negotiation495

In this model both "Credentials and Privacy Negotiator" and "ID Mapper" are implemented as parts of496

Discovery Service.497498

2.7.2 Frontend Credentials and Privacy Negotiation499

In future work we will address user giving input to Credentials and Privacy Negotiation.500501

2.7.3 Components of Credentials and Privacy Negotiator502

1. Service Requestor (SR) discovers the location of the User’s Credentials and Privacy Negotiator Agent503

(U-CPNA) and a candidate list of Web Service Providers (WSPs).504

2. SR passes the candidate list to the U-CPNA.505

3. U-CPNA discovers the location of user’s attribute aggregator.506

4. U-CPNA obtains a token with user’s pseudonym at the Attribute Aggregator.507

5. U-CPNA obtains necessary credentials for the user from the Attribute Aggregator. Attribute Aggre-508

gator, in turn may contact Attribute Authorities to obtain the credentials. Each such contact involves509

its own web service call, with discovery, IDMap, and actual web service calls, each with appropriate510

authorization steps. This complexity is not shown in the diagram.511

TAS3_D2p4_Protocols_API_Concrete_Arch Page 21 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Discovery Phase

Call Phase

Organization A Organization BTrust Network

Client Trust and
Privacy
Negotiator

SPID Mapper

1. Service Type, Options

2. Candidate services and pol

3. Narrowed opts and pol

4. Optional detailed
 negotiation

5. Service to use, svc-pledge

6. Request token to use service

7. Token

8. Request (token, resource, cli-pledge, svc-req)

9. Service denied because...

10. Request (token, resource, refined-cli-pledge, refined-svc-req)

11. Service performed, return data, refined policies

Figure 2.3:Credentials and Privacy Negotiation and Discovery steps

6. U-CPNA engages in credentials and privacy negotiation with the WSP’s Credentials and Privacy Ne-512

gotiation service.513

7. Once U-CPNA returns the chosen WSP, the SR obtains a token for calling the WSP.514

8. Finally the actual web service call is realized (with appropriate authorization steps, not shown in the515

diagram).516

Some variants and optimizations to this basic flow are possible. One obvious variant is to merge the517

calls to Discovery Registry and IDMapper. Liberty Alliance Discovery Service [?] effectively uses this518

optimization.519

Another, perhaps more significant, optimization is to integrate the credentials and privacy negotiation520

under the Discovery Service. In this scenario, the U-CPNA is called from the midst of the discovery521

process. This reduces steps and may allow the discovery process to use criteria from the credentials and522

privacy negotiation.523

1 Service Requestor (SR) discovers Web Service Provider (WSP).524

2 Discovery passes the candidate list to the U-CPNA. Discovery can also pass the End Point Reference525

(EPR), which includes a token with pseudonym for the call, to the Attribute Aggregator.526

5 U-CPNA obtains necessary credentials for the user from the Attribute Aggregator in same way as in527

unoptimized case.528

6 U-CPNA engages in credentials and privacy negotiation with the WSP’s Credentials and Privacy Nego-529

tiation service.530

TAS3_D2p4_Protocols_API_Concrete_Arch Page 22 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

IdP Discovery

SP1: Frontend SP2: Web Service

Master
PDP1

Master
PDP2

User

Trust PDP

H
T
T
P

W
S
C

P
E
P

S
S
O

A
t
t
r

P
E
P

e
t
c

Payload
Servlet

P
E
P

s
e
s

JSESSION

ZXSES

H
T
T
P WSPin PEP-rs-in

WSPout PEP-rs-out
e
t
c

DB

Inter-
ceptor

Inter-
ceptor

P
E
P

XACML SAML profile

XACML SAML profile
with TAS3 Trust extensions

ID-WSF 2.0
Discovery
with TAS3 Trust
extensions

D
I
C

ID-WSF 2.0
w/TAS3 ext

SAML 2.0

CTX

Figure 2.4:A deployment architecture for Credentials and Privacy Negotiation and Discovery

IDMap

Service
Requester

User’s
CPN
Agent

WSP’s
CPN
Agent

Web Service
Provider

Discovery
Registry

7. Negotiation

9. Web Service Call (payload)

Identity
Aggregator
WSP

6. Get
Credentials

Trust PDP

2. Get scoring N.B. Arrows indicate direction of initial
contact. Preconditions, such as service
registration, apply.

0. *

CPN = Credential and
 Privacy Negotiation

1. Discover
 WSP
 candidates
 and User’s
 TPN Agent

3. Ask agent to negotiate

4. Discover
 Attribute
 Aggregator

5. Get
ID tok

8. Get
ID tok

Figure 2.5:Credentials and Privacy Negotiation Components

8 The discovery service returns to SR the EPR of the WSP. Finally the actual web service call is realized.531

TAS3_D2p4_Protocols_API_Concrete_Arch Page 23 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

IDMap

Service
Requester

User’s
CPN
Agent

WSP’s
CPN
Agent

Web Service
Provider

Discovery
Registry

7. Negotiation

9. Web Service Call (payload)

Identity
Aggregator
WSP

6. Get
Credentials

Trust PDP

2. Get scoring N.B. Arrows indicate direction of initial
contact. Preconditions, such as service
registration, apply.

0. *

CPN = Credential and
 Privacy Negotiation

1. Discover
WSP
candidates
and issue
token for call.

3. Ask agent
 to negotiate

Figure 2.6:Credentials and Privacy Negotiation optimized flow

532

2.7.4 Protocol between Service Requester and the Credentials and Privacy533

Negotiation Agent534

Service Requester invokes the User’s Credentials and Privacy Negotiation Agent as a regular web ser-535

vice. The body of the call needs to express the candidate (eventually candidate list to optimize better).536

Since discovery requests already express most of the interesting fields, we just wrap it in537

<tas3cpn:CPNRequest>538

<di:RequestedService>539

<di:ServiceType>urn:x-foobar</di:ServiceType>540

<di:Framework version="2.0"></di:Framework>541

</di:RequestedService>542

</tas3cpn:CPNRequest>543

RequestedService identifies the NegotiationTarget, the resource, that the negotiation is about. Each544

interface can have its own way of identifyingresource(s). The NegotiationTarget includes specification of545

ServiceType as we assume that specification of the resource is interface specific.546

Response will look like547

<tas3cpn:CPNResponse xmlns:tas3cpn="urn:tas3:cpn-agent">548

<lu:Status xmlns:lu="urn:liberty:util:2006-08" code="OK"></lu:Status>549

<tas3cpn:CPNRemoteReport>...</tas3cpn:CPNRemoteReport>550

<tas3cpn:CPNLocalReport>...</tas3cpn:CPNLocalReport>551

<tas3cpn:CPNChosenCredentialSet>...</tas3cpn:CPNChosenCredentialSet>552

<tas3cpn:CPNDisclosedCredentialSet>...</tas3cpn:CPNDisclosedCredentialSet>553

</tas3cpn:CPNResponse>554

The<lu:Status> conveys whether negotiation was possible (e.g. whether aggregator could be con-555

tacted). OK value here does not indicate whether the actual negotiation process came to agreement. If556

TAS3_D2p4_Protocols_API_Concrete_Arch Page 24 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

<lu:Status> is OK, the caller still needs to examine<tas3cpn:CPNLocalReport> (look for "no error"557

***) to determine if agreement was reached.558

The negotiation end point is obtained by using the ProviderID to lookup the service’s extended SAML559

metadata and then extracting the end point from this metadata. (As a temporary testing kludge, negotiation560

end point can be constructed by taking the domain name of the ProviderID and using fixed "well known"561

port 9595. ***)562

Complete CPN SOAP call looks like this:563

< e :Header >564

<a:MessageID e : a c t o r =" h t t p : / / schemas . xmlsoap . org / soap / a c t o r / nex t "565

e :mus tUnde rs tand =" 1 "566

wsu: Id ="MID"567

xmlns :a =" h t t p : / /www. w3 . org / 2 0 0 5 / 0 8 / a d d r e s s i n g "568

xmlns:wsu=" h t t p : / / docs . o a s i s−open . org / wss / 2 0 0 4 / 0 1 / o a s i s−200\569

401−wss−w s s e c u r i t y−u t i l i t y −1.0 . xsd ">urn:MNR−Cif7rlkmavkRm8cmPyRQh< / a :Message \570

ID >571

<a:To e : a c t o r =" h t t p : / / schemas . xmlsoap . org / soap / a c t o r / nex t "572

e :mus tUnde rs tand =" 1 "573

wsu: Id ="TO"574

xmlns :a =" h t t p : / /www. w3 . org / 2 0 0 5 / 0 8 / a d d r e s s i n g "575

xmlns:wsu=" h t t p : / / docs . o a s i s−open . org / wss / 2 0 0 4 / 0 1 / o a s i s−200401−wss \576

−w s s e c u r i t y−u t i l i t y −1.0 . xsd "> h t t p : / / i dp . t a s 3 . p t : 8 0 8 1 / z x i d i d p ?o=S< / a:To>577

< b :Se nde r e : a c t o r =" h t t p : / / schemas . xmlsoap . org / soap / a c t o r / nex t "578

e :mus tUnde rs tand =" 1 "579

p r o v i d e r I D =" h t t p : / / sp . t a s 3 . p t : 8 0 8 0 / z x i d s e r v l e t / sso ?o=B"580

wsu: Id ="PRV"581

xmlns :b =" u r n : l i b e r t y : s b : 2 0 0 6−08"582

xmlns:wsu=" h t t p : / / docs . o a s i s−open . org / wss / 2 0 0 4 / 0 1 / o a s i s−200401\583

−wss−w s s e c u r i t y−u t i l i t y −1.0 . xsd " / >584

<sbf :Framework e : a c t o r =" h t t p : / / schemas . xmlsoap . org / soap / a c t o r / nex t "585

e :mus tUnde rs tand =" 1 "586

ve rs i on=" 2 .0 "587

wsu: Id ="FWK"588

x m l n s : s b f =" u r n : l i b e r t y : s b "589

xmlns:wsu=" h t t p : / / docs . o a s i s−open . org / wss / 2 0 0 4 / 0 1 / o a s i s−2\590

00401−wss−w s s e c u r i t y−u t i l i t y −1.0 . xsd " / >591

< w s s e : S e c u r i t y e : a c t o r =" h t t p : / / schemas . xmlsoap . org / soap / a c t o r / nex t "592

e :mus tUnde rs tand =" 1 "593

wsu: Id ="SEC"594

xmlns :wsse =" h t t p : / / docs . o a s i s−open . org / wss / 2 0 0 4 / 0 1 / o a s i s−\595

200401−wss−w s s e c u r i t y−secex t−1.0 . xsd "596

xmlns:wsu=" h t t p : / / docs . o a s i s−open . org / wss / 2 0 0 4 / 0 1 / o a s i s−2\597

00401−wss−w s s e c u r i t y−u t i l i t y −1.0 . xsd ">598

< s a : E n c r y p t e d A s s e r t i o n x m lns : sa =" u r n : o a s i s : n a m e s : t c : S A M L : 2 . 0 : a s s e r t i o n \599

">600

< xe n c :E n c ry p t ed D a ta Id ="ED39"601

Type=" h t t p : / /www. w3 . org / 2 0 0 1 / 0 4 / xmlenc # Element "602

xmlns :xenc =" h t t p : / /www. w3 . org / 2 0 0 1 / 0 4 / xmlenc # ">603

< ds :Key In fo xmlns :ds =" h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig # ">604

< d s : R e t r i e v a l M e t h o d Type=" h t t p : / /www. w3 . org / 2 0 0 1 / 0 4 / xmlenc # Encry \605

ptedKey "606

URI=" #EK39" / >607

< / ds :Key In fo >608

TAS3_D2p4_Protocols_API_Concrete_Arch Page 25 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

< x e n c : C i p h e r D a t a >609

< xenc :C iphe rVa lue >WlhfRE03eNxQ7rGH7610

(s n i p)611

4kdJYemjOMwd1zPVscag0NSwUABmeVusGJWh3yhiw+jLw==< / xenc :C iphe rVa lue >612

< / x e n c : C i p h e r D a t a >613

< xenc :Enc ryp t i onMethod Algor i thm =" h t t p : / /www. w3 . org / 2 0 0 1 / 0 4 / xmlenc \614

aes128−cbc " / >615

< / xe n c :E n c ry p t ed D a ta >616

<xenc :Encryp tedKey Id ="EK39"617

xmlns :xenc =" h t t p : / /www. w3 . org / 2 0 0 1 / 0 4 / xmlenc # ">618

< ds :Key In fo xmlns :ds =" h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig # ">619

<ds:X509Data>620

< d s : X 5 0 9 C e r t i f i c a t e >MIICmDCCAgGgAwIBAgIEK3InjUPjt7621

(s n i p)622

FvsfT4RR6iA7KvTLs7yJRUDOmOpyAaSKy / 5 Mbd55fsatbYD5COIIlMN3IuU=623

< / d s : X 5 0 9 C e r t i f i c a t e >624

< / ds:X509Data>625

< / ds :Key In fo >626

< x e n c : C i p h e r D a t a >627

< xenc :C iphe rVa lue >fAQTqq (s n i p d S I =< / xenc :C iphe rVa lue >628

< / x e n c : C i p h e r D a t a >629

< xenc :Enc ryp t i onMethod Algor i thm =" h t t p : / /www. w3 . org / 2 0 0 1 / 0 4 / xmlenc \630

rsa−1_5 " / >631

< x e n c : R e f e r e n c e L i s t >632

< x e n c : D a t a R e f e r e n c e URI=" #ED39" / >633

< / x e n c : R e f e r e n c e L i s t >634

< / xenc :Encryp tedKey >635

< / s a : E n c r y p t e d A s s e r t i o n >636

< w s s e : S e c u r i t y T o k e n R e f e r e n c e >637

< w s s e : K e y I d e n t i f i e r ValueType=" h t t p : / / docs . o a s i s−open . org / wss / o a s i s−\638

wss−saml−token−p r o f i l e −1.1#SAMLID" / >639

< / w s s e : S e c u r i t y T o k e n R e f e r e n c e >640

<wsu:Timestamp wsu: Id ="TS">641

< wsu :Crea ted >2009−12−19 T11:33:57Z< / wsu :Crea ted >642

< / wsu:Timestamp>643

< / w s s e : S e c u r i t y >644

< / e :Header >645

<e:Body>646

< tas3cpn:CPNRequest x m l n s : t a s 3 c p n =" u r n : t a s 3 : c p n−a g e n t ">647

< d i : R e q u e s t e d S e r v i c e x m l n s : d i =" u r n : l i b e r t y : d i s c o : 2 0 0 6−08">648

<di :Framework ve rs i on=" 2 .0 " / >649

< d i : S e r v i c e T y p e > urn :x−f o o b a r < / d i : S e r v i c e T y p e >650

< d i : P r o v i d e r I D > h t t p : / / wsp . t a s 3 . p t : 8 0 8 0 / wsp?o=B< / d i : P r o v i d e r I D >651

< d i : A c t i o n > urn :x−f o o b a r : C r e a t e < / d i : A c t i o n >652

< / d i : R e q u e s t e d S e r v i c e >653

< / tas3cpn:CPNRequest >654

< / e:Body>655

< / e :Enve lope >656

You can easily generate a test request with following shell script:657

z x c a l l −a h t t p s : / / i dp . t a s 3 . eu / z x i d i d p ?o=B b h : b e t t y− t u r n : t a s 3 : c p n−a g e n t <<X\658

ML659

< tas3cpn:CPNRequest x m l n s : t a s 3 c p n =" u r n : t a s 3 : c p n−a g e n t ">660

TAS3_D2p4_Protocols_API_Concrete_Arch Page 26 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

< d i : R e q u e s t e d S e r v i c e x m l n s : d i =" u r n : l i b e r t y : d i s c o : 2 0 0 6−08">661

< d i : S e r v i c e T y p e > urn :x−f o o b a r < / d i : S e r v i c e T y p e >662

< d i : P r o v i d e r I D > h t t p : / / wsp . t a s 3 . p t : 8 0 8 0 / wsp?o=B< / d i : P r o v i d e r I D >663

<di :Framework ve rs i on=" 2 .0 " / >664

< d i : A c t i o n > urn :x−f o o b a r : C r e a t e < / d i : A c t i o n >665

< / d i : R e q u e s t e d S e r v i c e >666

< / tas3cpn:CPNRequest >667

XML668
669

2.7.5 Protocol between Credentials and Privacy Negotiation Agent and At-670

tribute Aggregator671

User’s Credentials and Privacy Negotiation Agent invokes user’s Attribute Aggregator as a regular web672

service. The body of the call needs to express what credentials are desired and the body of the response673

must be able to pass multiple credentials.674675

2.7.6 Protocol between Credentials and Privacy Negotiation Agent and Ser-676

vice677

The protocol to realise the credentials and privacy negotiation functionality has yet to be finalised.678

Candidate protocols are:679

i. the one used by TrustBuilder 2 [?]680

ii. one based on the Web Service Profile of XACML [?] as enhanced by [?]681

iii. one based on an enhanced Liberty Discovery Service [?]682

Whichever protocol is finally chosen it must be able to support a ceremony to gaining incremental levels683

of mutual trust. The Web GUI of the Front End MUST support the ceremony.684685

2.8 Using Trust Scoring in Discovery686

When making discovery call, the minimum acceptable trust level SHOULD be conveyed as discovery687

option. The discovery service will then filter the candidates by calling Trust PDP and looking at the Permit688

/ Deny response.689690

2.8.1 Specifying Trust Inputs691

See D5.4 section 3.2 "Installation and Configuration Instruction" for full description of Trust Inputs and692

in particular specifying policies that capture trust inputs.693

The trust inputs are specified as discovery options, e.g.694

urn:tas3:trust:input:ctl1:policyid=ABC695

urn:tas3:trust:input:ctl1:ranking=avgfeedback696

urn:tas3:trust:input:ctl1:ranking=oct697

where "ctl1" identifies the input as conformant to Combined Trust Language version 1 and "poli-698

cyid=ABC", "ranking=oct", etc., are the trust language specific parameters.699

The Discovery service will pass the discovery options to the Trust PDP as XACML environment at-700

tributes as follows:701

<xasp:XACMLAuthzDecisionQuery ID="RmQtc_SvgPVYANCPrELYfjl59"702

IssueInstant="2009-12-19T11:33:54Z"703

Version="2.0"704

TAS3_D2p4_Protocols_API_Concrete_Arch Page 27 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

xmlns:xasp="urn:oasis:xacml:2.0:saml:protocol:schema:os">705

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">...</>706

<sa:Issuer xmlns:sa="urn:oasis:names:tc:SAML:2.0:assertion">http://sp.tas3.pt:8080/zxidservlet/sso?o=B</sa:Issuer>707

<xac:Request xmlns:xac="urn:oasis:names:tc:xacml:2.0:context:schema:os">708

<xac:Action>709

<xac:Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"710

DataType="http://www.w3.org/2001/XMLSchema#string">711

<xac:AttributeValue>Show</xac:AttributeValue>712

</xac:Attribute>713

</xac:Action>714

<xac:Environment>715

<xac:Attribute AttributeId="urn:tas3:trust:input:ctl1:policyid"716

DataType="http://www.w3.org/2001/XMLSchema#string">717

<xac:AttributeValue>ABC</xac:AttributeValue>718

</xac:Attribute>719

<xac:Attribute AttributeId="urn:tas3:trust:input:ctl1:ranking"720

DataType="http://www.w3.org/2001/XMLSchema#string">721

<xac:AttributeValue>avgfeedback</xac:AttributeValue>722

</xac:Attribute>723

<xac:Attribute AttributeId="urn:tas3:trust:input:ctl1:ranking"724

DataType="http://www.w3.org/2001/XMLSchema#string">725

<xac:AttributeValue>oct</xac:AttributeValue>726

</xac:Attribute>727

</xac:Environment>728

<xac:Resource>...</xac:Resource>729

<xac:Subject>...</xac:Subject>730

</xac:Request>731

</xasp:XACMLAuthzDecisionQuery>732

Please note that thepolicyid refers to a policy that has been precreated at the Trust PDP and that733

expresses minimum values for the various trust parameters.734

In terms of API the values would be passed as follows (line has been wrapped before ampersands for735

readability):736

epr = tas3_get_epr(cf, ses, "urn:service:type", null,737

"urn:tas3:trust:ctl1:input:policyid=ABC738

&urn:tas3:trust:ctl1:input:ranking=avgfeedback739

&urn:tas3:trust:ctl1:input:ranking=oct",740

"Show", 1);741

Calling tas3_get_epr()allows user interface with trust scorings to be presented. If this is not of interest,742

the discovery options can be given directly totas3_call()function:743

ret = tas3_call(cf, ses, "urn:service:type", null,744

"urn:tas3:trust:ctl1:input:policyid=ABC745

&urn:tas3:trust:ctl1:input:ranking=avgfeedback746

&urn:tas3:trust:ctl1:input:ranking=oct",747

null, "<Request/>");748

TAS3_D2p4_Protocols_API_Concrete_Arch Page 28 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

A way to test Trust negotiation from command line is749

./zxcall -d -a https://idp.tas3.eu/zxididp?o=B bh:betty -t urn:tas3:karlsruhe:test:service-discovery-test::2010-01-21 -di ’urn:tas3:trust:ctl1:input:policyid=ABC&urn:tas3:trust:ctl1:input:ranking=avgfeedback&urn:tas3:trust:ctl1:input:ranking=oct’ -e ’<Request/>’750

751

2.8.2 Returning Trust Scores752

The Trust Scoring is available from the Trust PDP component. As PDPs use XACML protocol, which753

natively does not have ability to convey anything else than Permit or Deny decision and associated obli-754

gations, we profile the second level XACML<StatusCode> to carry the ranking information: the Value755

XML attribute holds a URN prefix, identifying the trust ranking scheme, followed by actual raning in the756

syntax specified by the scheme.757

Example758

<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok">759

<StatusCode Value="urn:tas3:trust:ctl1:ranking:avgfeedback=0.960922">760

<StatusCode Value="urn:tas3:trust:ctl1:ranking:oct=0.711221"/>761

</StatusCode>762

</StatusCode>763

The status codes are extracted by the Discovery Service and packaged as additional EPR metadata when764

returned to the caller:765

<a:EndpointReference766

xmlns:a="http://www.w3.org/2005/08/addressing"767

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"768

notOnOrAfter="2037-01-05T23:03:59.001Z"769

wsu:Id="EPRID92lFPo3ZNEt_3rHtJFoU">770

<a:Address>771

http://141.26.143.22:8080/matching-simple/services/SimpleResource772

</a:Address>773

<a:Metadata>774

<sbf:Framework775

xmlns:sbf="urn:liberty:sb"776

version="2.0"/>777

<di:Abstract xmlns:di="urn:liberty:disco:2006-08">Test</>778

<di:ProviderID xmlns:di="urn:liberty:disco:2006-08">779

http://141.26.143.22:8080/wspdemosp3.xml780

</di:ProviderID>781

<di:ServiceType xmlns:di="urn:liberty:disco:2006-08">urn:tas3:matchingservice</>782

<tas3:Trust vers="ctl1">783

<tas3:TrustRanking metric="avgfeedback" val="0.960922"/>784

<tas3:TrustRanking metric="oct" val="0.711221"/>785

</tas3:Trust>786

</a:Metadata>787

</a:EndpointReference>788

789

2.9 Realization of the Audit and Dashboard Function790

791

2.9.1 Audit Event Bus792

Satisfies Req.D1.2-9.5-Trail.793

Tentative protocol choice (in order of preference):794

TAS3_D2p4_Protocols_API_Concrete_Arch Page 29 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

1. AMQP [?]795

2. Liberty Accounting Service [?] with subscriptions and notifications [?] and [?].796

3. Diameter [?]797

4. RADIUS [?]798

5. Apache Muse799

Whichever transport is chosen, the actual audit records are packaged as OpenXDAS messages (see:800

openxdas.sourceforge.net).801802

2.9.2 Audit Event Ontology803

• Enumeration of mandatory edit events according to some standard804

- RADIUS and Diameter communities have defined at least some messages805

• ZXID logging documentation [?] provides an idea, at least applicable to SSO806

807

2.9.3 Dashboard Function808

• Dashboard should also realize the "PII Consent Service" or "Privacy Manager" at large.809

• SHOULD support Liberty Interaction service [?]810

811

2.9.4 User Interaction812

User interaction is needed for consent questions and possibly even soliciting additional data during back813

channel web service calls. Interaction can be realized using two different mechanisms814

a. Liberty Interaction service [?] where a web services call is made to the interaction service. This service815

is often colocated with the Dashboard.816

b. The web service returns special SOAP fault requesting redirection to interaction URL.817

Special attribute for interaction iFrame URL.818819

2.9.5 TAS3 User Interaction Widget820

TAS3 Widget is a special user interaction device inserted into SP web sites (e.g. by means of iFrame),821

but pulled from the Dashboard.822

The widget will refresh itself periodically from the dashboard and if necessary solicit interaction from823

the user. In many ways it is similar to web based instant messaging client.824

If a WSP wants to interact with a user, it discovers the location of user’s interaction service. Typically825

this will point to the dashboard. When interaction request is sent, the dashboard queues it to be delivered826

on the next refresh of the widget. When user replies, the interaction service call is completed and reslt827

returned to the WSP.828

The URL for loading the widget to the SP user interface is determined either by an attribute passed on829

SSO or by discovering a special Widget resource.830

The SSO attribute is named831

urn:tas3:uiwidget:epr832

The service type for discovery is called833

TAS3_D2p4_Protocols_API_Concrete_Arch Page 30 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

urn:tas3:uiwidget834

Other actions that can be integrated into the widget (so that the web page does not have to implement835

them separately):836

• Single logout837

838

2.10 Realization of Delegation Function839

The Delegation Service functionality is described in section 6 of D7.1. The protocols that this will use840

will be described in the next version of the current deliverable.841842

2.11 Attribute Authorities843

TAS3 network may contain various attribute authorities. Every Identity Provider may act as an attribute844

authority by including<AttributeStatement>, see [?], in the single sign-on assertions that it emits.845

This constitutes an attribute push mechanism.846

Problem with a push mechanism is knowing which attributes to push. A possible solution is for the847

Front End to express its attribute needs using a SAML extension, such as [?]. However, usually a better848

solution is to implement pull model Attribute Authority, i.e. the attribute authority is simply a web service.849

There are several ways of implementing a data web service. [?] specifies AttributeQuery protocol,850

but does not adequately specify the transport binding and peer authentication. TAS3 attribute authority851

SHOULD support [?] AttributeQuery protocol using TAS3 SOAP binding, see section2.3.2.852

Other data web services, such as ID-DAP [?] over TAS3 SOAP binding, MAY be supported. A deploy-853

ment may also make local or proprietary arrangements for accessing a non TAS3 attribute authority, e.g.854

using LDAP [?] or WebDAV with file containing attribute certificate or SAML attribute assertion.855856

2.12 TAS3 Simple Obligations Language (SOL)857

TAS3 Architecture foresees that a Service Requester needs to express obligations and policies that it is858

willing and able to respect, and on the other hand the personal data will have associated with it obligations859

and policies ("sticky policies") under which the data can be or is released.860

In general the obligations and sticky policies can be expressed in any convenient language. Unfortu-861

nately no standard language has emerged in the industry for this type of application despite many being862

proposed. TAS3 is committed to supporting multiple such languages, but for purposes of pilots and other863

simple applications we define "TAS3 Simple Obligations Language no1" (SOL1) with potential future864

versions to follow.865

SOL obligations MAY be used in XACML obligations as described in [?]. In particular, D7.1 Appendix866

A1.2 provides an example. In short, they MUST appear in anObligation/AttributeAssignment ele-867

ment. When passed in<b:UsageDirective>, <xa:Obligation> element MUST be used as a wrapper.868

Use of<xa:Obligation> element as a wrapper in other XML contexts is RECOMMENDED.869

N.B. Since SOAP headers in TAS3 are generally signed, the<b:UsageDirective> header870

constitutes signed pledge to honour the obligations. This is similar to Signed Acceptance of871

Obligations (SAO) concept of Obligation of Trust (OoT) protocol described in [?] et al. Put872

another way, the pledge expresses the Capabilities. We effectively optimize the OoT Protocol873

Scheme (sec 3.2) by avoiding iterative discovery of capabilities and moving directly to the874

signed pledge phase (5 in fig. 5).875

The ObligationId XML attribute of <xa:Obligation> element is used to specify the obligations876

processor (module that the PDP should invoke to evaluate the obligation). Some processors may be simple877

in which case theObligationId completely identifies the nature of the obligation.878

When using SOL, however, the sematics of the obligation depend on the actual SOL expressions passed879

in the<xa:AttributeAssignment> child element of<xa:Obligation>. In this case theObligationId880

TAS3_D2p4_Protocols_API_Concrete_Arch Page 31 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

merely identifies the obligations processing engine. The SOL1 obligations processor is identified by881

ObligationId value "urn:tas3:sol1". The actual SOL1 expressions are held in<xa:AttributeAssignment>882

elements with followingAttributeId XML-attributes:883

urn:tas3:sol1:pledge Obligations that WSC pledges to honour if it receives them in any response884

data.885

urn:tas3:sol1:require Obligations that the emitting party requires to be honoured. Typically886

this is used to attach obligations to the data that is returned.887

There MUST only be one<xa:AttributeAssignment> with eachAttributeId, i.e. there can only888

be zero, one, or two<xa:AttributeAssignment> elements in<xa:Obligation> element. There MUST889

only be one<xa:Obligation> element withObligationId "urn:tas3:sol1" and there MUST only be one890

<b:UsageDirective> in the SOAP message.891

TheDataType XML attsibute of the<xa:AttributeAssignment> MUST always have value892

"http://www.w3.org/2001/XMLSchema#string". TheFulfillOn XML attribute of <xa:Obligation>893

element SHOULD, in absence of more specific guidance, be set to "Permit".894

The urn:tas3:sol:vers Query String parameter allows for versioning of the obligations language.895

The actual obligations are expressed using URL Query String Syntax with attribute value pairs expressing896

the obligations. Newline (0x0a) MAY be used as separator instead of an ampersand. Should escaping be897

needed, the URL encoding MAY be used.898

Example899

<b:UsageDirective id="USE">900

<xa:Obligation ObligationId="urn:tas3:sol1" FulfillOn="Permit">901

<xa:AttributeAssignment902

AttributeId="urn:tas3:sol1:pledge"903

DataType="http://www.w3.org/2001/XMLSchema#string">904

urn:tas3:sol:vers=1905

urn:tas3:sol1:delon=1255555377906

urn:tas3:sol1:use=urn:tas3:sol1:use:forpurpose907

urn:tas3:sol1:share=urn:tas3:sol1:share:group908

urn:tas3:sol1:repouse=urn:tas3:sol1:repouse:oper909

</xa:AttributeAssignment>910

</xa:Obligation>911

</b:UsageDirective>912

As can be seen from the example, the attributes are actually URNs and each attribute tends to express913

an obligation that is required by data or that the Requester promises to honour.914915

2.12.1 SOL1 Query String Attributes916

urn:tas3:sol:vers Identifies the version of SOL. Always "1" for SOL1.917

urn:tas3:sol1 Special value reserved to be used asObligationId or in general to identify this918

dialect of SOL.919

urn:tas3:sol1:pledge Special value reserved to be used asAttributeId920

urn:tas3:sol1:require Special value reserved to be used asAttributeId921

urn:tas3:sol1:use How information can or will be used and shared. A comma separated list of922

enumerators in the order of principally intended use (ordered here, in our opinion, from least ag-923

gressive to more aggressive as indicated; however this ordering is subjective and other opinions may924

exist). Theurn:tas3:sol1:use:purpose should be favoured overurn:tas3:sol1:use, unless925

the vague meaning ofurn:tas3:sol1:use is desired.926

TAS3_D2p4_Protocols_API_Concrete_Arch Page 32 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

urn:tas3:sol1:use:transaction (0) Information will only be used for the transaction927

for which it was collected928

urn:tas3:sol1:use:session (1) Information will only be used within the current session929

urn:tas3:sol1:use:user (2) Information can be used in the user’s other sessions in the930

same app931

urn:tas3:sol1:use:forpurpose (3) Information will be used only for the purpose it was932

collected, in abstract. This usage is discouraged. Instead the specific purpose should be speci-933

fied using format934

urn:tas3:sol1:use:purpose=business-process-model-id; or935

urn:tas3:sol1:use:purpose=business-process-instance-id936

These two forms allow the obligation to be tied into the model in abstract, or to the specific937

business process instance in particular, e.g. for exceptional processing such as Break-the-938

Glass.939

urn:tas3:sol1:use:serveranon (4) Information can be used by other processes on same940

server as long as user is not explicitly identified941

urn:tas3:sol1:use:serverident (5) Information can be used by other processes on same942

server (user may be identified)943

urn:tas3:sol1:use:appanon (6) Information can be used by the application towards other944

purposes as long as the user is not explicitly identified945

urn:tas3:sol1:use:appident (7) Information can be used by the application towards other946

purposes (user may be identified)947

urn:tas3:sol1:use:organon (8) Information can be used by the organization for other948

nonmarketing purposes as long as the user is not explicitly identified949

urn:tas3:sol1:use:orgident (9) Information can be used by the organization for other950

nonmarketing purposes (user may be identified)951

urn:tas3:sol1:use:mktanon (10) Information can be used by the organization for market-952

ing purposes as long as the user is not explicitly identified953

urn:tas3:sol1:use:mktident (11) Information can be used by the organization for mar-954

keting purposes (user may be identified)955

urn:tas3:sol1:use:grpanon (12) Information can be used within the business group for956

other nonmarketing purposes as long as the user is not explicitly identified957

urn:tas3:sol1:use:grpident (13) Information can be used within the business group for958

other nonmarketing purposes (user may be identified)959

urn:tas3:sol1:use:grpmktanon (14) Information can be used within the business group960

for marketing purposes as long as user is not explicitly identified961

urn:tas3:sol1:use:grpmktident (15) Information can be used within the business group962

for marketing purposes (user may be identified)963

urn:tas3:sol1:use:shareanon (16) Information can be shared with anyone for other non-964

marketing purposes as long as the user is not explicitly identified965

urn:tas3:sol1:use:shareident (17) Information can be shared with anyone for other966

nonmarketing purposes (user may be identified)967

urn:tas3:sol1:use:sharemktanon (18) Information can be shared with anyone for mar-968

keting purposes as long as user is not explicitly identified969

urn:tas3:sol1:use:sharemktident (19) Information can be shared with anyone for mar-970

keting purposes (user may be identified)971

urn:tas3:sol1:use:anyall (20) Information can be used for any and all purposes without972

restriction.973

TAS3_D2p4_Protocols_API_Concrete_Arch Page 33 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

urn:tas3:sol1:use:purpose Specific business process that is allowed to use the data. This can974

be specified either as abstract business-process-model-id or as business-process-instance-id. For975

example:976

urn:tas3:sol1:use:purpose=business-process-model-id; or977

urn:tas3:sol1:use:purpose=business-process-instance-id978

These two forms allow the obligation to be tied into the model in abstract, or to the specific business979

process instance in particular, e.g. for exceptional processing such as Break-the-Glass.980

urn:tas3:sol1:delon Delete data on as Unix seconds since epoch. This obligation effectively981

allows control of data retention, but instead of being expressed in relative terms, it is expressed in982

absolute terms that are legally easier to interpret.983

urn:tas3:sol1:retention Maximum data retention period as Unix seconds. This obligation is984

meant for database storage. Upon act of data access, retention should be converted to delon using985

current wall clock time.986

urn:tas3:sol1:certdel Certify deletion by legally binding report to the audit bus.987

urn:tas3:sol1:preauth Before each use of the data, user’s explicit consent - preauthorization -988

has to be obtained. Value specifies where to obtain preauthorization.989

urn:tas3:sol1:callback When about to use data, call back to the user for opportunity to modify990

the data, or deny it. Value specifies where to call back.991

urn:tas3:sol1:repouse Report use to the audit bus. Comma separated list of enumerators:992

urn:tas3:sol1:repouse:never No need to report use (seldom appears)993

urn:tas3:sol1:repouse:all Report any and all use994

urn:tas3:sol1:repouse:oper Report operational use, but not statistical or administrative995

use.996

urn:tas3:sol1:repouse:stat:immed Report use in near real time. for day need to be997

reported, if there was any use.998

urn:tas3:sol1:repouse:stat:daily No need to report individual use, but summary999

statistics for day need to be reported, if there was any use.1000

urn:tas3:sol1:repouse:stat:weekly No need to report individual use, but summary1001

statistics for week need to be reported, if there was any use.1002

urn:tas3:sol1:repouse:stat:monthly No need to report individual use, but summary1003

statistics for month need to be reported, if there was any use.1004

urn:tas3:sol1:repouse:stat:quarterly No need to report individual use, but sum-1005

mary statistics for quarter (last 3 months) need to be reported, if there was any use.1006

urn:tas3:sol1:repouse:stat:semestral No need to report individual use, but sum-1007

mary statistics for semester (last 6 months) need to be reported, if there was any use.1008

urn:tas3:sol1:repouse:stat:yearly No need to report individual use, but summary1009

statistics for year need to be reported, if there was any use.1010

If no urn:tas3:sol1:repouse:stat is specified, default isurn:tas3:sol1:repouse:stat:immed.1011

If conflicting enumerators are specified, the most strict one applies.1012

urn:tas3:sol1:xborder Enumerator describing what sort of cross border data sharing can occur:1013

urn:tas3:sol1:xdom:eu Only within EU common market.1014

TAS3_D2p4_Protocols_API_Concrete_Arch Page 34 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

urn:tas3:sol1:xdom:safeharbour Common market and safe harbour participants1015

urn:tas3:sol1:license Use of information is subject to license specified in the value part. The1016

value part should be either URL to online accessible license text, or it should be a URN pointing to1017

a well known license.1018

The general assumption is that the license terms are either well known to the system (and pro-1019

grammed in) or machine readable. While the user may have to consent to the license at some level,1020

it is not meant that this license reference be displayed to user and he required to read and consent1021

on the spot.1022

urn:tas3:sol1:contract-fwk Framework or governance contract identifier.1023

urn:tas3:sol1:contract Contract identifier.1024

urn:tas3:sol1:contract-sub Subcontract or amendment identifier1025

urn:tas3:sol1:contract-part Part, exhibit, annex, or clause identifier.1026

1027

2.12.2 Matching Pledges to Sticky Policies and Obligations1028

When delivering response to data request, the Responder outbound PEP compares the pledges that were1029

received in the request and checks that the sticky policies and obligations that are attached to the data1030

coming from the backend repository can be satisfied given the pledges. This ensures that the Responder1031

will never ship out data unless the Requester has clearly committed itself to respect the sticky policies and1032

obligations.1033

Example1034

Consider the following request1035

<e:Envelope>1036

<e:Header>1037

<!-- WS-Addressing headers and wsse:Security with DSIG not shown -->1038

<b:UsageDirective id="USE">1039

<xa:Obligation ObligationId="urn:tas3:sol1" FulfillOn="Permit">1040

<xa:AttributeAssignment1041

AttributeId="urn:tas3:sol1:pledge"1042

DataType="http://www.w3.org/2001/XMLSchema#string">1043

urn:tas3:sol:vers=11044

urn:tas3:sol1:delon=12555553771045

urn:tas3:sol1:use=urn:tas3:sol1:use:purpose1046

urn:tas3:sol1:share=urn:tas3:sol1:share:group1047

urn:tas3:sol1:repouse=urn:tas3:sol1:repouse:oper1048

</>1049

</>1050

</>1051

</>1052

<e:Body id="BDY">1053

<idhrxml:Query>...</></></>1054

Now, backend returns the following data1055

<dataItem id="1">1056

<tas3sol:Obligations xmlns:tas3sol="http://tas3.eu/tas3sol/200911/">1057

urn:tas3:sol:vers=11058

urn:tas3:sol:delon=12555553781059

TAS3_D2p4_Protocols_API_Concrete_Arch Page 35 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

urn:tas3:sol1:use=urn:tas3:sol1:use:transaction1060

</>1061

<data>value</>1062

</>1063

1064

<dataItem id="2">1065

<tas3sol:Obligations xmlns:tas3sol="http://tas3.eu/tas3sol/200911/">1066

urn:tas3:sol:vers=11067

urn:tas3:sol:delon=12555553761068

urn:tas3:sol1:use=urn:tas3:sol1:use:purpose1069

urn:tas3:sol1:repouse=urn:tas3:sol1:repouse:all1070

</>1071

<data>value</>1072

</>1073

1074

<dataItem id="3">1075

<tas3sol:Obligations xmlns:tas3sol="http://tas3.eu/tas3sol/200911/">1076

urn:tas3:sol:vers=11077

urn:tas3:sol:delon=12555553781078

urn:tas3:sol1:use=urn:tas3:sol1:use:purpose1079

urn:tas3:sol1:repouse=urn:tas3:sol1:repouse:oper,repouse=urn:tas3:sol1:repouse:stat:weekly1080

</>1081

<data>value</>1082

</>1083

The first data item would have to be filtered out because its usage policy is "transaction" while requester1084

pledged usage for intended "purpose". Intended purpose can span many transactions, therefore its broader1085

that the allowed use. Note that thedelon constraint would be compatible with the request.1086

The second data item has to be filtered out for two reasons: (i) itsdelon is stricter that what requester1087

pledged, and (ii) therepouse constraint is more onerous than requester is willing to perform.1088

The third data item’s obligations are compatible with the requester’s pledges. It is returned to the1089

requester.1090

N.B. This is just an example. The way in which the obligations are attached to the data can be1091

quite different from the illustrated, e.g. internal C data structure rather than XML. It is also1092

possible that obligations are not stored with the data, but rather generated by a PDP based on1093

data dependent sticky-policies.1094

Once the Responder Outbound PEP has filtered the data, it is sent, with the obligations, to Requester1095

which MAY pass the obligations to Obligations Service for enforcement.10961097

2.12.3 Passing Simple Obligations Dictionaries Around1098

While in SOL1 the set of enumerators is fixed and with fixed meaning which is hardwired to the simplest1099

PEP implementations, we foresee users inventing additional attributes and enumerators. This raises the1100

need for the PEP implementations to be configurable or somehow understand the new enumerators on1101

basis of their semantics.1102

Such configurations and online semantics passing can be achieved with Simple Obligations Dictionaries1103

(SODs), which effectively allow the semantics to be declared. The dictionary can be stored in a configura-1104

tion file, and we provide SOL1 standard dictionary assol1.sod (which you should not modify) and you1105

may be able to provide additional dictionary fragments in user editable configuration files. Alternatively,1106

the nonstandard dictionary fragments can be passed inline in the protocol by means of<tas3sol:Dict>1107

element.1108

Example1109

TAS3_D2p4_Protocols_API_Concrete_Arch Page 36 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

<e:Envelope>1110

<e:Header>1111

<!-- WS-Addressing headers and wsse:Security with DSIG not shown -->1112

<b:UsageDirective id="USE">1113

<xa:Obligation ObligationId="urn:tas3:sol1" FulfillOn="Permit">1114

<xa:AttributeAssignment1115

AttributeId="urn:tas3:sol1:pledge"1116

DataType="http://www.w3.org/2001/XMLSchema#string">1117

urn:tas3:sol:vers=11118

urn:tas3:sol1:delon=12555553771119

urn:tas3:sol1:use=urn:tas3:sol1:use:purpose1120

urn:tas3:sol1:share=urn:tas3:sol1:share:group1121

urn:tas3:sol1:repouse=urn:tas3:sol1:repouse:oper1122

</>1123

</>1124

<tas3sol:Dict xmlns:tas3sol="http://tas3.eu/tas3sol/200911/">1125

Entities:1126

Data Subject (Agent the Data describes)1127

Data Processor (Agent that processes the Data)1128

Data (Information which is a resource under protection)1129

Organisation (a Data Processor)1130

Marketing (an Action)1131

Process (an Action of manipulating Data)1132

1133

Relations:1134

Identify1135

Retain1136

1137

Property1138

May (property of an action)1139

Must (property of an action)1140

1141

urn:tas3:sol1:use:mktident is an enumerator of urn:tas3:sol1:use1142

1143

urn:tas3:sol1:use:mktident means1144

Organization (who) - Process (action) - Data (what) - Marketing (why)1145

Organization (who) - Identify (action) - Data Subject (What)1146

</>1147

</>1148

</>1149

<e:Body id="BDY">1150

<idhrxml:Query>...</></></>1151

This example uses<tas3sol:Dict> element to define a new enumerator forurn:tas3:sol1:use1152

by spelling out its semantic meaning in terms of the dictionary items (example is somewhat unrealistic1153

because you should not repeat or redefine dictionary entries from the standardsol1.sod). In particular the1154

mktident really is a combination of two consequences: you will receive spam and you will be identified.1155

Thus the "means" declaration has two lines.11561157

2.13 Realization of Sticky Policies1158

As discussed in [?] section 4.1 "Protocol Support for Conveyance of Sticky Policies", Encapsulating1159

Security Layer (ESL) is one approach for implementing sticky policies. While total encapsulation is pos-1160

sible, for already established applications protocols something lighter weight is desired. Most properties1161

TAS3_D2p4_Protocols_API_Concrete_Arch Page 37 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

of ESL can also be implemented by a special SOAP header that references all the elements that would have1162

been contained or referenced by the ESL approach. The subtle, but salient, diffenrence is that instead of1163

the intrusive encapsulation layer, all the relevant policy data is carried in the<tas3:ESLPolicy> header.1164

The reference is either by XMLid attribute (preferred) or a simplified absolute XPath [?].1165

Example1166

<e:Envelope>1167

<e:Header>1168

<wsse:Security>...(signature here to bind ESLPolicies and Body)...</>1169

<tas3:ESLPolicies mustUnderstand="1">1170

<tas3:ESLApply>1171

<tas3:ESLRef ref="#data1"/>1172

<tas3:ESLRef xpath="container/subcontainer"/>1173

<xa:Obligation ObligationId="urn:tas3:sol1">1174

<xa:AttributeAssignment1175

AttributeId="urn:tas3:sol1:require"1176

DataType="http://www.w3.org/2001/XMLSchema#string">1177

urn:tas3:sol:vers=11178

urn:tas3:sol1:delon=12555553771179

</xa:AttributeAssignment>1180

</xa:Obligation>1181

</tas3:ESLApply>1182

<tas3:ESLApply>1183

<tas3:ESLRef ref="#data2"/>1184

<xa:Obligation ObligationId="urn:tas3:sol1">1185

<xa:AttributeAssignment1186

AttributeId="urn:tas3:sol1:require"1187

DataType="http://www.w3.org/2001/XMLSchema#string">1188

urn:tas3:sol:vers=11189

urn:tas3:sol1:delon=12555666661190

</xa:AttributeAssignment>1191

</xa:Obligation>1192

</tas3:ESLApply>1193

</tas3:ESLPolicies>1194

</e:Header>1195

<e:Body>1196

<data id="data1" value="foo">1197

<data id="data2" value="bar">1198

<container>1199

<subcontainer value="goo"/>1200

</container>1201

</e:Body>1202

</e:Envelope>1203

In the above example bothid based references to<data> and XPath based reference for the<subdata>1204

are illustrated. It also illustrates how to apply different sticky policies (n.b. Obligation is a particularly1205

common type of sticky policy) to different data.12061207

2.14 Passing Additional Credentials in Web Service Call1208

The usual way to pass credentials is using an attribute assertion inside<wsse:Security> header. Such1209

attribute assertion identifies the calling user. Sometimes additional credentials identifying the actual re-1210

source are passed in<TargetIdentity> SOAP header. However, both of these methods basically admit1211

TAS3_D2p4_Protocols_API_Concrete_Arch Page 38 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

single credential (which can contain other credentials as attributes) typically not signed by the Requester.1212

If Requester needs to add additional credentials, it can use<tas3:Credentials> element.1213

<e:Envelope>1214

<e:Header>1215

<wsse:Security>...</>1216

<tas3:Credentials xmlns:tas3="http://tas3.eu/tas3/200911/">1217

... reuse XACML or SAML attribute schema1218

</tas3:Credentials>1219

</e:Header>1220

<e:Body>...</>1221

</e:Envelope>1222

1223

2.15 Uniform Application Status and Error Reporting1224

Traditionally Web Service application protocols have defined their own error and status reporting mech-1225

anisms. TAS3 standardizes the status reporting by adding a standardized SOAP header that the application1226

SHOULD insert if it wishes to enable some automatic TAS3 processing. This is especially important for1227

automation of Online Compliance Testing.1228

Some ways the errors can be reported1229

1. Network or socket layer, e.g. drop the connection in case of a security violation. This is very extreme1230

response and SHOULD NOT be used normally, unless there is a genuine threat, such as suspected1231

Denial-of-Service (DoS) attack.1232

2. HTTP layer error codes. In normal operation, 200 should be used. In particular 4xx and 5xx codes1233

SHOULD NOT be used to indicate authorization errors deep in the application or application errors.1234

The HTTP error codes SHOULD generally be used for errors that are detected at web server level.1235

3. Application platform errors, such as stack backtraces, SHOULD NOT happen. All errors SHOULD1236

be trapped and appropriately reported by the application. Despite this rule, the reality of application1237

development means that stack traces will be output by buggy or immature software.1238

4. SOAP faults. Generally SOAP faults should only be used to indicate SOAP transport level errors, as1239

defined by SOAP and ID-WSF specifications.1240

The API, such astas3_get_fault(), for creating and inspecting TAS3 related SOAP faults is described1241

in section 3.1.13 "SOAP Fault and Status Generation and Inspection".1242

5. ID-WSF special headers. Some ID-WSF level errors cause an ID-WSF specific SOAP headers to be1243

emitted in the response.1244

6. TAS3 error header SHOULD be used to report all TAS3 and application level errors.1245

7. Application level error mechanisms MAY be used to report application level errors. It is RECOM-1246

MENDED that the application level protocols be designed to use the TAS3 error headers or at least the1247

Liberty Utility schema dedined<Status> element [?].1248

1249

2.15.1 TAS3 Status Header1250

The TAS3 Status Header is based on the<Status> element defined in Liberty Utility Schema, see [?].1251

<e:Envelope>1252

<e:Header>1253

<tas3:Status1254

TAS3_D2p4_Protocols_API_Concrete_Arch Page 39 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

xmlns:tas3="http://tas3.eu/tas3/200911/"1255

ctlpt="urn:tas3:ctlpt:app"1256

code="OK"/>1257

</e:Header>1258

<e:Body>...</>1259

</e:Envelope>1260

The API, such astas3_get_tas3_status()for creating and inspecting TAS3 Status Header is described in1261

section 3.1.13 "SOAP Fault and Status Generation and Inspection".12621263

2.15.2 TAS3 Status Codes1264

Thecode XML attribute may contain any of the ID-WSF defined status codes, see [?] Table 2 on pp.12-1265

13, including the special value "OK" to indicate success. It may also contain any application specific status1266

indications, provided that they are qualified to their own namespace using URN or URL constructs. Finally1267

it may contain any of the following TAS3 defined status codes:1268

urn:tas3:status:deny Operation denied by authorization layer1269

urn:tas3:status:notapplicable Operation not applicable from authorization perspective1270

urn:tas3:status:indeterminate Operation’s status can not be determined by the authorization1271

layer1272

urn:tas3:status:nosig Operation denied due to required signature missing.1273

urn:tas3:status:badsig Operation denied due to signature validation problem.1274

urn:tas3:status:badcond Expiry time or audience restriction did not validate.1275

1276

2.15.3 TAS3 Control and Reporting Points1277

The status messages can emanate from several parts in TAS3 security layer, or even from points inside1278

the application. To assist in determining where errors originate, the<tas3:Status> element carries a1279

ctlpt XML attribute, whose value is a URI identifying the origin of the error. While application can1280

define a number of additional URIs, the TAS3 architecture defines the following:1281

urn:tas3:ctlpt:pep:rq:out Request Out PEP (callout 1)1282

urn:tas3:ctlpt:pep:rq:in Request In PEP (callout 2)1283

urn:tas3:ctlpt:pep:rs:out Response Out PEP (callout 3)1284

urn:tas3:ctlpt:pep:rs:in Response In PEP (callout 4)1285

urn:tas3:ctlpt:app Application. In this case application can also define its own URIs.1286

1287

2.16 Registration of Business Process Models1288

The attribute needs and participants of the business process model are declared using CARML declara-1289

tion. Each business process model is assigned a service typi URI, which is used by the SPs that implement1290

the business process model to register themselves in the discovery.1291

TAS3_D2p4_Protocols_API_Concrete_Arch Page 40 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

1292

3 The Official TAS 3 API (normative, but non-exclusive)1293

Although wire-interoperability is the main goal of the TAS3 project, we recognize that interoperability1294

at software interface level, i.e. interchangeable implementations of an API, is valuable as well. Stan-1295

dardization of APIs, in addition to wire protocols, helps to promote building a culture and community of1296

programmers catering for the TAS3 platform. Such community fosters adoption through mutual self help1297

and shared knowledge base. Supporting full constellation of APIs for all programming languages and1298

platforms is fairly expensive business, but is necessary to address the present fragmented market.1299

The TAS3 API described herein is meant to have multiple implementations. Each implementation1300

provides1301

• The interface files described herein, such astas3.h1302

• Libraries or implementation files that provide the symbols described by the interface files. In as far1303

as possible, these will be calledlibtas3.so, libtas3.dll, or other appropriate and similar name.1304

However a concrete implementation may choose to incorporate the TAS3 API interface in its own1305

library, or may require its own library to be included in addition to thelibtas3.* library. Such1306

additional requirements shall be conspicuously described in the implementation documentation.1307

The official TAS3 API is not meant to exclude other wire-protocol compatible implementations of TAS3.1308

Thus, while there is only one official API, other APIs can be equally TAS3 compatible on the wire.1309

The particular API in use is chosen by the programmer by including the appropriate header file or in-1310

terface description. The particular API implementation in use is chosen by the system administrator or1311

the programmer by linking against a particular library providing the TAS3 binary interface, or by dy-1312

namically loading a module implementing the said binary interface. This leaves great implementation1313

flexibility while accurately describing the TAS3 interface and implementation at source code (API) and1314

binary (ABI) level.13151316

3.1 Language Independent Description of the API1317

Since all language specific bindings, by-and-large, share the same semantics, the functions and meth-1318

ods are first described generically, using pseudocode if needed. Each language binding takes the same1319

parameters and behaves in the way that API would naturally work,mutantis mudandis, for that language.1
1320

The five essential APIs are1321

tas3_sso()SSO (with optional application independent authorization)1322

tas3_az()Application Dependent Authorization1323

tas3_call() Web Services Client: call a web service and validate response1324

tas3_wsp_validate()Validate that web service request can be processed1325

tas3_wsp_decorate()Create a web service response1326

1327

3.1.1 Single Sign On (SSO) Alternatives1328

The TAS3 SSO API’s primary aim is supporting SAML 2.0 SSO (and SLO) with attribute and bootstrap1329

passing. Not all COTS SAML 2.0 SP APIs (or IdPs) are capable of this out of the box. Thus being SAML1330

2.0 compatible is a prerequisite, but additional properties, such as specific functions, session level attribute1331

pool, and bootstrap cache, must be satisfied as well to be TAS3 API compliant. The TAS3 SSO API is1332

likely to support in future (as of 2009) in a transparent way InfoCard specification [?], and may be able to1333

support other SSO specifications as well.1334

1Some procedural bias is evident, even in "object oriented" language bindings. This is due to least-common-denominator
syndrome, i.e. desire to have same API for all programming languages.

TAS3_D2p4_Protocols_API_Concrete_Arch Page 41 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Some alternatives for supporting SSO:1335

• mod_auth_saml and (Apache) subprocess environment provides a complete solution for SSO layer1336

if using Apache httpd or compatible web server. In such case the SSO is handled without any1337

programming simply by editinghttpd.conf (and in some caseszxid.conf). The mod_auth_saml1338

configuration directives are the same as inzxid.org and they are introduced tohttpd.conf using1339

ZXIDConf directives.1340

• tas3_sso()API as complete solution.tas3_sso()API implements a state machine that the calling1341

application must crank by making repeated calls (one per HTTP request until SSO completes). This1342

approach has a benefit of isolating the calling application from protocol flow specifics and allows1343

the API to support multiple SSO protocols in a transparent manner.1344

• tas3_sso_servlet.class: Java servlet that can be configured to Tomcat or other servlet container to1345

implement SSO for payload servlets. Internally the SSO servlet calls tas3_simple();1346

• Deprecated Alternative: by steps approach using medium level APIs (deprecated because the logic1347

of the specific SSO protocol flow would be hardwired into the calling application)1348

1349

3.1.2 SSO: ret = tas3_sso(conf, qs, auto_flags)1350

The tas3_sso()API is essentially a Single Sign-On protocol state machine. Unless the application1351

already has a valid active session established, it should calltas3_sso()upon every HTTP request, passing1352

in the query string or form submission part as theqs argument. The argument is a string and must be1353

formatted as a query string. Thetas3_sso()then returns a string which the calling application needs1354

to interpret to decide what to do next. Possible actions include performing HTTP redirect, sending the1355

returned string as HTTP response, or completing a successful single sign on.1356

When Single Sign-On is completed, thetas3_sso()establishes a session object for holding received1357

attributes and bootstrap EPRs. These can be accessed from the session either by the calling application,1358

or by other TAS3 API functions such astas3_az()and tas3_call(). The tas3_sso()may incorporate a1359

configurable frontend policy enforcement point. Such configuration is implementation dependent.1360

There are many options. Most of these have sensible default values or can be specified in a configuration1361

file. The first parameter either is a configuration object, or a configuration string that modifies or adds to the1362

default configuration. Some aspects of operation oftas3_sso()are affected by theauto_flags parameter.1363

Table 3.1:tas3_sso()configuration options that all implementations MUST support

Option Description

PATH Path of configuration directory, which contains the
configuration file and may contain other implemen-
tation dependent information.

URL Base URL from which the EntityID is formed.

TAS3_D2p4_Protocols_API_Concrete_Arch Page 42 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Table 3.2:tas3_sso()AUTO flags

Dec Hex Symbol Description

1 0x01 TAS3_AUTO_EXIT Call exit(2), 0=return "n", even if auto CGI
2 0x02 TAS3_AUTO_REDIR Automatic. handle redirects, assume CGI (calls

exit(2))
4 0x04 TAS3_AUTO_SOAPC SOAP response handling, content gen
8 0x08 TAS3_AUTO_SOAPH SOAP response handling, header gen
16 0x10 TAS3_AUTO_METAC Metadata response handling, content gen
32 0x20 TAS3_AUTO_METAH Metadata response handling, header gen
64 0x40 TAS3_AUTO_LOGINC IdP select / Login page handling, content gen
128 0x80 TAS3_AUTO_LOGINH IdP select / Login page handling, header gen
256 0x100 TAS3_AUTO_MGMTC Management page handling, content gen
512 0x200 TAS3_AUTO_MGMTH Management page handling, header gen
1024 0x400 TAS3_AUTO_FORMF In IdP list and mgmt screen, generate form fields
2048 0x800 TAS3_AUTO_FORMT In IdP list & mgmt screen, wrap in<form> tag.
4095 0xfff TAS3_AUTO_ALL Enable all automatic CGI behaviour.
4096 0x1000 TAS3_AUTO_DEBUG Enable debugging output to stderr.
8192 0x2000 TAS3_AUTO_OFMTQ Output Format Query String
16384 0x4000 TAS3_AUTO_OFMTJ Output Format JSON

Example Usage1364

01 res = tas3_sso(conf, request[’QUERY_STRING’], 0x1800);1365

02 switch (substr(res, 0, 1)) {1366

03 case ’L’: header(res); return 0; # Redirect1367

04 case ’n’: return 0; # already handled1368

05 case ’b’: return my_send_metadata();1369

06 case ’e’: return my_render_idp_selection_screen();1370

07 case ’d’: return my_start_session_and_render_protected_content();1371

08 default: error_log("Unknown tas3_sso() res(%s)", res); return 0;1372

09 }1373

Return values1374

The return value starts by an action letter and may be followed by data that is relevant for the action.1375

L Redirection request (L as in Location header). The full contents of the res is the redirection request,1376

ready to be printed to stdout of a CGI. If you want to handle the redirection some other way, you1377

can parse the string to extract the URL and do your thing. This res is only returned if you did not1378

set TAS3_AUTO_REDIR.1379

Example:1380

Location: https://sp1.zxidsp.org:8443/zxid?o=C1381

C Content with Content-type header. The res is ready to be printed to the stdout of a CGI, but if you want1382

to handle it some other way, you can parse the res to extract the header and the actual body.1383

Example:1384

CONTENT-TYPE: text/html1385

1386

<title>Login page</title>1387

...1388

TAS3_D2p4_Protocols_API_Concrete_Arch Page 43 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Example (metadata):1389

CONTENT-TYPE: text/xml1390

1391

<m:EntityDescriptor>1392

...1393

Less than ("<") Content without headers. This could be HTML content for login page or metadata1394

XML. To know which (and set content type correctly), you would have to parse the content.1395

This res format is only applicable if you did not specify TAS3_AUTO_CTYPE (but did specify1396

TAS3_AUTO_CONTENT).1397

n Do nothing. The operation was somehow handled internally but theexit(2)was not called (e.g. TAS3_AUTO_SOAP1398

was NOT specified). The application should NOT attempt generating any output.1399

b Indication that the application should send SP metadata to the client. This res is only returned if you1400

did not set TAS3_AUTO_META.1401

c Indication that the application should send SP CARML declaration to the client. This res is only re-1402

turned if you did not set TAS3_AUTO_META.1403

e Indication that the application should display the IdP selection page. This res is only returned if you did1404

not set TAS3_AUTO_CONTENT.1405

d Indication that SSO has been completed or that there was an existing valid session in place. The res is1406

an LDIF entry containing attributes that describe the SSO or session.1407

dn: idpnid=Pa45XAs2332SDS2asFs,affid=https://idp.demo.com/idp.xml1408

objectclass: zxidsession1409

affid: https://idp.demo.com/idp.xml1410

idpnid: Pa45XAs2332SDS2asFs1411

authnctxlevel: password1412

sesid: S12aF3Xi4A1413

cn: Joe Doe1414

Usually your application would parse the attributes and then render its application specific content.1415

z Authorization failure. Application MUST NOT display protected content. Instead, it should offer1416

user interface where the user can understand what happened and possibly gain the extra credentials1417

needed.1418

Asterisk ("*") Although any unknown letter should be interpreted as an error, we follow convention of1419

prefixing errors with an asterisk ("*").1420

1421

3.1.3 Authorization: decision = tas3_az(conf, qs, ses)1422

Implicit application independent authorization steps are performed intas3_sso()SSO,tas3_call()Ser-1423

vice Requester,tas3_wsp_validate(), andtas3_wsp_decorate()APIs. To activate them, you need to supply1424

appropriate configuration options. Specifics of this configuration are implementation dependent.1425

The tas3_az()function is the main work horse for requesting authorization decisions from the PDPs.1426

It allows programmer to make Application Dependent authorization calls, supplying some or all of the1427

attributes needed in a XACML request.tas3_az()can also use attributes from the session, if configured.1428

Specifics of this configuration are implementation dependent.1429

conf the configuration string or object1430

TAS3_D2p4_Protocols_API_Concrete_Arch Page 44 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

qs if supplied, any CGI variables are imported to session environment as attributes according to configu-1431

ration. Format is CGI Query String.1432

ses attributes are obtained from the session, if supplied (see also CGI). Session ID can be supplied as a1433

string or a session object can be passed.1434

return 0 if deny (for any reason, e.g. indeterminate), or string representation of<xac:Response> ele-1435

ment if permit1436

Example Pseudocode1437

cf = tas3_new_conf();1438

ses = tas3_alloc_ses(cf);1439

ret = tas3_simple_cf_ses(cf, 0, $QUERY_STRING, ses, 0, 0x1800);1440

if (ret =~ /^d/) {1441

perr "SSO ok, now checking authorization";1442

if (tas3_az_cf_ses(cf, "Action=SHOW&BusinessProcess=register:emp", ses))1443

perr "Permit, add code to deliver application content";1444

else1445

perr "Deny, send back an error";1446

}1447

1448

3.1.4 Authorization base: decision = tas3_az_base(conf, qs, ses)1449

This is similar totas3_az()with the difference that the<xac:Response> element is returned even in1450

the deny and indeterminate cases (null is still returned if there was an error). Effectively thisbaseform1451

does not make judgement about whether<xac:Response> means permit, deny, or something else.1452

You should use this function if the Deny message contains interesting obligations (normally it does not).14531454

3.1.5 Web Service Call: ret_soap = tas3_call(cf, ses, svctype, url, di_opt,1455

az_cred, req_soap)1456

tas3_call()first checks ifreq_soap string is already a SOAP envelope. If not, it will supply miss-1457

ing <Envelope>, <Header>, and<Body> elements. You still need to pass something inreq_soap as1458

tas3_call()can not guess the contents of the<Body> - it can only add the wrapping. The idea is that the1459

programmer can concentrate on application layer and thetas3_call()will supply the rest automatically. If,1460

however, the programmer wishes to pass some SOAP headers, he can do so by passing the entire enve-1461

lope. Even if entire envelope is passed,tas3_call()will add TAS3 specific headers and signatures to this1462

envelope.1463

Similarly on return,tas3_call()will check all TAS3 relevant SOAP headers and signatures, but will1464

still return the entire SOAP envelope as a string so that the application layer can, if it wants, look at the1465

headers.1466

Next, tas3_call()will attempt to locate an EPR for the service type. This may already be in the session1467

cache, or a discovery step may be performed. If discovery is needed it will be automatically made. The1468

discovery can be constrained usingurl anddi_opt parameters. For example, if there is a predetermined1469

(list of) service provider(s), theurl parameter can be used to force the choice. Discovery may still be1470

done to obtain credentials needed for the call, but the discovery result will be constrained to match the1471

suppliedurl. See sectiontas3_get_epr()for description of explicit discovery.1472

Before actual SOAP call,tas3_call()may contact a PDP to authorize the outbound call. This corre-1473

sponds to application independentRequester Out PEPand is configurable: you can disable it if you prefer1474

to make an explicit application dependent call totas3_az(). The attributes for the XACML request are1475

mainly derived from the session, but additional attributes can be supplied withaz_cred parameter, which1476

has query string format. Functioning of the authorization step can be controlled using configuration, which1477

is implementation dependent.1478

TAS3_D2p4_Protocols_API_Concrete_Arch Page 45 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Then tas3_call()augments the XML data structure with Liberty ID-WSF mandated headers. It will1479

look at the security mechanism and token specified in the EPR and perform appropriate steps to create1480

WS-Security header and apply signature as needed.1481

Next tas3_call(), using its built-in http client, opens TCP connection to the web service provider and1482

sends the SOAP envelope using HTTP protocol. It then waits for the HTTP response, blocking until the1483

response is received.1484

After executing the SOAP call and verifying any returned TAS3 relevant headers and signatures,tas3_call()1485

may contact a PDP to authorize receiving data, and to pass on any obligations that were received. This1486

corresponds to application independentRequester In PEPand is configurable: you can disable it if you1487

prefer to make explicit application dependent call totas3_az(). The contents of the XACML request are1488

determined based on the response, session,az_cred parameter, which is shared for both Responder Out1489

and Responder In PDP calls, and configuration, which is implementation dependent.1490

cf Configuration object, seetas3_new_conf_to_cf()1491

ses Session object, used to locate EPRs, seetas3_new_ses()1492

svctype Service type and namespace URN that is applicable to the body. Passed as a string.1493

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or actual service1494

endpoint URL.1495

di_opt (Optional) Additional discovery options for selecting the service, query string format1496

az_cred (Optional) Additional authorization credentials or attributes, query string format. These creden-1497

tials will be populated to the session’s attribute pool in addition to the ones obtained from SSO1498

and other sources. Then a PDP is called to get an authorization decision (as well as obligations1499

we pledge to support). This implements generalized (application independent) Requester Out and1500

Requester In PEPs. To implement application dependent PEP features you should calltas3_az()1501

directly.1502

req_soap string used as SOAP body or as SOAP envelope template.1503

return SOAP envelope as a string.1504

Example1505

01 env = tas3_callf(cf, ses, "urn:hrxml:idhrxml", 0,0,0,1506

02 "<idhrxml:Modify>"1507

03 "<idhrxml:ModifyItem>"1508

04 "<idhrxml:Select>%s</idhrxml:Select>"1509

05 "<idhrxml:NewData>%s</idhrxml:NewData>"1510

06 "</idhrxml:ModifyItem>"1511

07 "</idhrxml:Modify>", cgi.select, cgi.data);1512

08 if (env) {1513

09 xml = xml_parse(env);1514

10 if (xml->Status->code == "OK") {1515

11 INFO("Data is " + xml->Data);1516

12 } else {1517

13 ERR("Web service error " + xml->Status->code);1518

14 }1519

15 } else {1520

16 ERR("HTTP failure");1521

17 }1522

TAS3_D2p4_Protocols_API_Concrete_Arch Page 46 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

As can be seen, the paradigm is to supply the payload data as a string. Although it could be supplied1523

as a data structure, constructed with many constructors, our experience has shown that string representa-1524

tion is most intuitive and self documenting for most programmers. Despite abandoning the constructor1525

approach, all relevant syntax and schema checks are internally done by simply parsing the string and then1526

reserializing it before sending to the wire. This tends to be necessary anyway due to signature generation.15271528

3.1.6 Requester out: req_decor_soap = tas3_wsc_prepare_call(cf, ses, svc-1529

type, az_cred, req_soap)1530

This API function decorates a request envelope with necessary ID-WSF SOAP headers and signs it, but1531

does not send the envelope. This API is used as a building block intas3_call(), which see. Usually you1532

should usetas3_call()instead of this API function.15331534

3.1.7 Requester in: status = tas3_wsc_valid_resp(cf, ses, az_cred, res_decor_soap)1535

This API function validates response envelope checking necessary ID-WSF SOAP headers and signa-1536

ture. This API is used as a building block intas3_call(), which see. Usually you should usetas3_call()1537

instead of this API function.1538

tas3_wsc_prepare_call()andtas3_wsc_valid_resp()work together as follows:1539

01 req_soap = tas3_wsc_prepare_call(cf, ses, svctype,1540

02 url, di_opt, az_cred,1541

03 "<idhrxml:Modify>...</>");1542

04 resp_soap = your_http_post_client(url, req_soap);1543

05 if (tas3_wsc_valid_resp(cf, ses, az_cred, resp_soap)) {1544

06 xml = xml_parse(resp_soap);1545

07 INFO("Data is " + xml->Data);1546

08 } else1547

09 ERR("HTTP failure");1548

1549

3.1.8 Responder in: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req)1550

Validate SOAP request (envelope), specified by the stringsoap_req. Service Responder should call1551

this function to validate an inbound, received, TAS3 request. This will1552

• verify signatures1553

• determine trust1554

• populate to WSP’s session any credentials found in the request1555

• possibly perform an application independentResponder In PEPauthorization, calling a PDP behind1556

the scenes usingtas3_az().1557

After tas3_wsp_validate(), the application needs to, in application dependent way, extract from the1558

response the application payload and process it. However, this is much simplified as there is no need to1559

perform any further verification.1560

If the stringsoap_req starts by "<e:Envelope", then it should be a complete SOAP envelope including1561

<e:Header> (and<e:Body>) parts.1562

cf TAS3 configuration object, seetas3_new_conf()1563

ses Session object that contains the EPR cache, seetas3_new_ses()1564

TAS3_D2p4_Protocols_API_Concrete_Arch Page 47 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

az_cred (Optional) Additional authorization credentials or attributes, query string format. These creden-1565

tials will be populated to the attribute pool in addition to the ones obtained from token and other1566

sources. Then a PDP is called to get an authorization decision (matching obligations we support1567

to those in the request, and obligations pledged by caller to those we insist on). This implements1568

generalized (application independent)Responder In PEP. To implement application dependent PEP1569

features you should calltas3_az()directly.1570

soap_req Entire SOAP envelope as a string1571

return idpnid, as a string, of the target identity of the request (rest of the information is populated to the1572

session object, from where it can be retrieved).1573

1574

3.1.9 Responder out: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp)1575

Add ID-WSF (and TAS3) specific headers and signatures to web service response. Simple and intuitive1576

specification of XML as string: no need to build complex data structures.1577

Service responder should prepare application layer of the response and then call this function to decorate1578

the response with TAS3 specifics, and to wrap it in SOAP envelope. This will1579

• add correlation headers1580

• possibly perform an application independentResponder Out PEPauthorization step, calling a PDP1581

behind the scenes usingtas3_az().1582

• apply signature1583

If the string starts by "<e:Envelope", then string should be a complete SOAP envelope including1584

<e:Header> and<e:Body> parts. This allows caller to specify custom SOAP headers, in addition to1585

the ones that the underlyingzxid_wsc_call()will add. Usually the payload service will be passed as the1586

contents of the body. If the string starts by "<e:Body", then the<e:Envelope> and<e:Header> are1587

automatically added. If the string does not start by "<e:Envelope" or "<e:Body"2, then it is assumed to1588

be the payload content of the<e:Body> and the rest of the SOAP envelope is added.1589

cf TAS3 configuration object, seetas3_new_conf()1590

ses Session object that contains the EPR cache1591

az_cred (Optional) Additional authorization credentials or attributes, query string format. These cre-1592

dentials will be populated to the attribute pool in addition to the ones obtained from token and1593

other sources. Then a PDP is called to get an authorization decision (generating obligations). This1594

implements generalized (application independent)Responder Out PEP. To implement application1595

dependent PEP features you should calltas3_az()directly.1596

soap_respXML payload as a string1597

return SOAP Envelope of the response, as a string, ready to be sent as HTTP response.1598

1599

3.1.10 Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt, act, n)1600

N.B. This function is automatically called bytas3_call()so making an explicit call is seldom1601

needed. You may consider making such call if you need to know which EPR is actually found1602

and you want to query some properties of the EPR. You can then pass the URL, as found using1603

tas3_get_epr_url(), as an argument totas3_call()to constrain the call to use a specific EPR.1604

2Be careful to use the "e:" as namespace prefix if you want e:Envelope or e:Body to be detected.

TAS3_D2p4_Protocols_API_Concrete_Arch Page 48 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

First search the epr cache, and if there is a cache miss, go discover an EPR over the net. This is the1605

main work horse for WSCs wishing to call WSPs via EPR.1606

cf TAS3 configuration object, also used for memory allocation1607

ses Session object in whose EPR cache the file will be searched1608

svc Service type (usually a URN). String.1609

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or actual service1610

endpoint URL. String.1611

di_opt (Optional) Additional discovery options for selecting the service, query string format.1612

act (Optional) The action, or method, that must be invokable on the service. String.1613

n Which matching instance is returned. 1 means first. Integer.1614

return EPR data structure on success, null on failure (no discovery EPR in cache, or not found by the1615

discovery service).1616

1617

3.1.11 url = tas3_get_epr_url(cf, epr)1618

Returns the<a:Address> field of an EPR as a string. This is the endpoint URL.16191620

3.1.12 entityid = tas3_get_epr_entid(cf, epr)1621

Returns the<di:ProviderID> field of an EPR as a string. This is same as SAML2 EntityID.16221623

3.1.13 a7n = tas3_get_epr_a7n(cf, epr)1624

Returns assertion from EPR<sec:Token> field as a string.16251626

3.1.14 SOAP Fault and Status Generation and Inspection1627

Error reporting using SOAP faults and TAS3 status header is discussed in section 2.13 "Uniform Appli-1628

cation Status and Error Reporting"1629

tas3_status* tas3_mk_tas3_status(tas3_conf* cf, const char* ctlpt, const char* sc1, const char* sc2, const char* msg, const char* ref);1630

tas3_fault* tas3_mk_fault(tas3_conf* cf, const char* fa, const char* fc, const char* fs, const char* sc1, const char* sc2, const char* msg, const char* ref);1631

1632

void tas3_set_fault(tas3_conf* cf, tas3_ses* ses, tas3_fault* flt);1633

tas3_fault* tas3_get_fault(tas3_conf* cf, tas3_ses* ses);1634

1635

char* tas3_get_tas3_fault_sc1(tas3_conf* cf, tas3_fault* flt);1636

char* tas3_get_tas3_fault_sc2(tas3_conf* cf, tas3_fault* flt);1637

char* tas3_get_tas3_fault_comment(tas3_conf* cf, tas3_fault* flt);1638

char* tas3_get_tas3_fault_ref(tas3_conf* cf, tas3_fault* flt);1639

char* tas3_get_tas3_fault_actor(tas3_conf* cf, tas3_fault* flt);1640

1641

void tas3_set_tas3_status(tas3_conf* cf, tas3_ses* ses, tas3_status* status);1642

tas3_status* tas3_get_tas3_status(tas3_conf* cf, tas3_ses* ses);1643

1644

char* tas3_get_tas3_status_sc1(tas3_conf* cf, tas3_status* st);1645

char* tas3_get_tas3_status_sc2(tas3_conf* cf, tas3_status* st);1646

char* tas3_get_tas3_status_comment(tas3_conf* cf, tas3_status* st);1647

char* tas3_get_tas3_status_ref(tas3_conf* cf, tas3_status* st);1648

char* tas3_get_tas3_status_ctlpt(tas3_conf* cf, tas3_status* st);1649

TAS3_D2p4_Protocols_API_Concrete_Arch Page 49 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

1650

3.1.15 Delegated Discovery1651

void tas3_set_delegated_discovery_epr(tas3_conf* cf, tas3_ses* ses, tas3_epr* epr);1652

Allows explicit control over which Discovery Service is used, such as selecting somebody else’s Dis-1653

covery Service. This allows delegated access.1654

TAS3_D2p4_Protocols_API_Concrete_Arch Page 50 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

1655

3.2 Java Binding1656

Before you start using the SSO API, you should consider using the TAS3 SSO servlet.tas3_sso_servlet.class1657

can be configured to Tomcat or other servlet container to implement SSO for payload servlets. Internally1658

the SSO servlet callstas3_sso().1659

Similar module is planned (as of 2009) for Responder implementation. The pushable filter module1660

for servlet environments (e.g. Tomcat) will wraptas3.wsp_validate()andtas3.wsp_decorate(). The filter1661

module allows some web services to be TAS3 enabled without modification to the application code.16621663

3.2.1 Interface and Initialization1664

This binding is implemented astas3java.class andlibtas3jni.so (libtas3jni.jnilib on MacOS1665

X, libtas3jni.dll on Windows) module.1666

Typically you need to include in your Java servlet or program something like1667

01 import tas3java.*;1668

02 static tas3.tas3_conf cf;1669

03 static {1670

04 System.loadLibrary("tas3jni");1671

05 cf = tas3.new_conf_to_cf("PATH=/var/tas3/");1672

06 }1673

This will bring in the functionality of the TAS3 Java binding and cause the JNI library implementing1674

this functionality to be loaded. It will also create a configuration object that the other parts of a servlet can1675

share.1676

The Java binding replaces the "tas3_" prefix in function names with the class prefix "tas3.", for example1677

tas3_sso()becomestas3.sso()andtas3_az()becomestas3.az().1678

The TAS3 Java interface is defined as follows1679

package tas3;1680

1681

public interface tas3 {1682

public static tas3_conf new_conf_to_cf(String conf);1683

public static tas3_ses new_ses(tas3_conf cf);1684

public static tas3_ses fetch_ses(tas3_conf cf, String sid);1685

public static String sso_cf(tas3_conf cf, int qs_len, String qs,1686

p_int res_len, int auto_flags);1687

public static int get_ses(tas3_conf cf, tas3_ses ses, String sid);1688

public static int az_cf_ses(tas3_conf cf, String qs, tas3_ses ses);1689

public static int az_cf(tas3_conf cf, String qs, String sid);1690

public static int az(String conf, String qs, String sid);1691

1692

public static String wsp_validate(tas3_conf cf, tas3_ses ses,1693

String az_cred, String enve);1694

public static String wsp_decorate(tas3_conf cf, tas3_ses ses,1695

String az_cred, String enve);1696

public static String call(tas3_conf cf, tas3_ses ses,1697

String svctype, String url, String di_opt,1698

String az_cred, String enve);1699

public static tas3_epr get_epr(tas3_conf cf, tas3_ses ses,1700

String svc, String url, String di_opt,1701

String action, int n);1702

TAS3_D2p4_Protocols_API_Concrete_Arch Page 51 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

public static String get_epr_url(tas3_conf cf, tas3_epr epr);1703

public static String get_epr_entid(tas3_conf cf, tas3_epr epr);1704

public static String get_epr_a7n(tas3_conf cf, tas3_epr epr);1705

}1706

1707

1708

3.2.2 Initialize: cf = tas3.new_conf_to_cf(conf)1709

Create a new TAS3 configuration object given configuration string and possibly configuration file. Usu-1710

ally a configuration object is generated and passed around to different API calls to avoid reparsing the1711

configuration at each API call.1712

conf Configuration string1713

return Configuration object1714

1715

3.2.3 New session: ses = tas3.new_ses(cf)1716

Create a new TAS3 session object. Usually a session object is created just before callingzxidjni.wsp_validate().1717

cf Configuration object, seetas3.new_conf_to_cf()1718

return Session object1719

1720

3.2.4 SSO: ret = tas3.sso_cf_ses(cf, qs_len, qs, ses, null, auto_flags)1721

cf Configuration object, seetas3.new_conf_to_cf()1722

qs_len Length of the query string. -1 = usestrlen()1723

qs Query string (or POST content)1724

ses Session object, seetas3.new_ses(). Session object is modified.1725

res_len Result parameter. Must always passnull as result parameters are not supported in the Java1726

binding.1727

auto_flags Automation flags1728

return String representing protocol action or SSO attributes1729

1730

3.2.5 Authorization: decision = tas3.az_cf_ses(cf, qs, ses)1731

cf the configuration object, seetas3.new_conf_to_cf()1732

qs additional attributes that are passed to PDP1733

ses session object, from which most attributes come1734

return 0 on deny (for any reason, e.g. indeterminate), or non-null if permit.1735

TAS3_D2p4_Protocols_API_Concrete_Arch Page 52 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

1736

3.2.6 WSC: resp_soap = tas3.call(cf, ses, svctype, url, di_opt, az_cred, req_soap)1737

cf Configuration object, seetas3.new_conf_to_cf()1738

ses Session object, used to locate EPRs, seetas3.new_ses()1739

svctype Service type and namespace URN that is applicable to the body. Passed as a string.1740

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or actual service1741

endpoint URL.1742

di_opt (Optional) Additional discovery options for selecting the service, query string format1743

az_cred (Optional) Additional authorization credentials or attributes, query string format.1744

req_soap string used as SOAP body or as SOAP envelope template.1745

return SOAP envelope as a string1746

1747

3.2.7 WSP: tgtnid = tas3.wsp_validate(cf, ses, az_cred, soap_req)1748

cf TAS3 configuration object, seetas3.new_conf_to_cf()1749

ses Session object that contains the EPR cache, seetas3.new_ses()1750

az_cred (Optional) Additional authorization credentials or attributes, query string format.1751

soap_req Entire SOAP envelope as a string1752

return idpnid, as a string, of the target identity of the request (rest of the information is populated to the1753

session object, from where it can be retrieved).1754

1755

3.2.8 WSP: soap = tas3.wsp_decorate(cf, ses, az_cred, soap_resp)1756

cf TAS3 configuration object, seetas3.new_conf_to_cf()1757

ses Session object that contains the EPR cache1758

az_cred (Optional) Additional authorization credentials or attributes, query string format.1759

soap_respXML payload, as a string1760

return SOAP Envelope of the response, as a string, ready to be sent as HTTP response.1761

1762

3.2.9 Explicit Discovery: epr = tas3.get_epr(cf, ses, svc, url, di_opt, act, n)1763

First search epr cache, and if miss, go discover an EPR over the net. This is the main work horse for1764

WSCs wishing to call WSPs via EPR.1765

cf TAS3 configuration object, also used for memory allocation1766

ses Session object in whose EPR cache the file will be searched1767

svc Service type (usually a URN)1768

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or actual service1769

endpoint URL.1770

TAS3_D2p4_Protocols_API_Concrete_Arch Page 53 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

di_opt (Optional) Additional discovery options for selecting the service, query string format1771

act (Optional) The action, or method, that must be invokable on the service1772

n Which matching instance is returned. 1 means first1773

return EPR data structure on success, 0 on failure (no discovery EPR in cache, or not found by the1774

discovery service).1775

1776

3.2.10 url = tas3.get_epr_url(cf, epr)1777

cf TAS3 configuration object, also used for memory allocation1778

epr An EPR object, such as obtained fromtas3_get_epr()1779

return The<a:Address> field of an EPR as a string. This is the endpoint URL.1780

1781

3.2.11 entityid = tas3.get_epr_entid(cf, epr)1782

cf TAS3 configuration object, also used for memory allocation1783

epr An EPR object, such as obtained fromtas3_get_epr()1784

return The<di:ProviderID> field of an EPR as a string. This is same as SAML2 EntityID.1785

1786

3.2.12 a7n = tas3.get_epr_a7n(cf, epr)1787

cf TAS3 configuration object, also used for memory allocation1788

epr An EPR object, such as obtained fromtas3_get_epr()1789

return Assertion from EPR<sec:Token> field as a string.1790

1791

3.2.13 Available Implementations (Non-normative)1792

This binding is implemented using Java Native Interface calls tozxid.org C library by zxidjni module.1793

Other implementations are welcome.1794

TAS3_D2p4_Protocols_API_Concrete_Arch Page 54 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

1795

3.3 PHP Binding1796

Using TAS3 PHP APIs requires first loading the TAS3 module and creating a configuration object.1797

These are typically accomplished from PHP initialization. You may consider creatingtas3.ini file:1798

dl("php_tas3.so");1799

$cf = tas3_new_conf_to_cf("PATH=/var/tas3/");1800

1801

3.3.1 Application Level Integration1802

It should be noted that many PHP applications run inside Apache httpd and therefore can accomplish1803

SSO using mod_auth_saml approach without any programming. Especially useful is mod_auth_saml’s1804

ability to "fake" REMOTE_USER subprocess environment variable, effectively enabling any application1805

that supports HTTP basic authentication to also support SAML SSO.1806

We expect to provide specific integration examples for some software packages. As of 2009 none are1807

available, but Mahara is one of the first ones planned.18081809

3.3.2 cf = tas3_new_conf_to_cf(conf)1810

conf Configuration string1811

return Configuration object1812

1813

3.3.3 ses = tas3_new_ses(cf)1814

Create a new TAS3 session object. Usually a session object is created just before calling1815

cf Configuration object1816

return Session object1817

1818

3.3.4 SSO: ret = tas3_sso_cf_ses(cf, -1, qs, ses, null, auto_flags)1819

cf Configuration object, seetas3_new_conf_to_cf()1820

qs_len Length of the query string. -1 = usestrlen()1821

qs Query string (or POST content)1822

ses Session object, seetas3_new_ses(). Session object is modified.1823

res_len Should always be passed as null (result parameter is not supported for PHP).1824

auto_flags Automation flags1825

return String representing protocol action or SSO attributes1826

Example1827

01 <?1828

02 $qs = $_SERVER[’REQUEST_METHOD’] == ’GET’1829

03 ? $_SERVER[’QUERY_STRING’]1830

04 : file_get_contents(’php://input’);1831

05 $ses = tas3_new_ses($cf);1832

TAS3_D2p4_Protocols_API_Concrete_Arch Page 55 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

06 $res = tas3_sso_cf_ses($cf, -1, $qs, $ses, null, 0x1814);1833

07 switch (substr($res, 0, 1)) {1834

08 case ’L’: header($res); exit; # Redirect (Location header)1835

09 case ’<’: header(’Content-type: text/xml’); echo $res; exit;1836

10 case ’n’: exit; # Already handled1837

11 case ’e’: my_render_idp_select();1838

12 case ’d’: break; # Logged in case1839

13 default: die("Unknown res($res)");1840

14 }1841

151842

16 if (tas3_az_cf_ses($cf, "Action=Show", $ses)) {1843

17 echo "Permit.\n";1844

18 # Render protected content here1845

19 } else {1846

20 echo "Deny.";1847

21 }1848

22 ?>1849

1850

3.3.5 Authorization: decision = tas3_az_cf_ses(cf, qs, ses)1851

cf the configuration object1852

qs additional attributes that are passed to PDP1853

ses session object, from which most attributes come1854

return 0 on deny (for any reason, e.g. indeterminate), or non-null if permit.1855

1856

3.3.6 WSC: resp_soap = tas3_call(cf, ses, svctype, url, di_opt, az_cred, req_soap)1857

cf Configuration object, seetas3_new_conf_to_cf()1858

ses Session object, used to locate EPRs, seetas3_new_ses()1859

svctype Service type and namespace URN that is applicable to the body. Passed as a string.1860

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or actual service1861

endpoint URL.1862

di_opt (Optional) Additional discovery options for selecting the service, query string format1863

az_cred (Optional) Additional authorization credentials or attributes, query string format.1864

req_soap string used as SOAP body or as SOAP envelope template.1865

return SOAP envelope as a string1866

Example1867

01 $ret = tas3_call($cf, $ses, "urn:id-sis-idhrxml:2007-06:dst-2.1",1868

02 null, null, null,1869

03 "<idhrxml:Query>" .1870

04 "<idhrxml:QueryItem>" .1871

05 "<idhrxml:Select>$criteria</idhrxml:Select>" .1872

06 "</idhrxml:QueryItem>" .1873

07 "</idhrxml:Query>");1874

TAS3_D2p4_Protocols_API_Concrete_Arch Page 56 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

1875

3.3.7 WSP: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req)1876

cf TAS3 configuration object, seetas3_new_conf()1877

ses Session object that contains the EPR cache, seetas3_new_ses()1878

az_cred (Optional) Additional authorization credentials or attributes, query string format.1879

soap_req Entire SOAP envelope as a string1880

return target name id (tgtnid), as a string, of the target identity of the request (rest of the information is1881

populated to the session object, from where it can be retrieved).1882

1883

3.3.8 WSP: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp)1884

cf TAS3 configuration object, seetas3_new_conf()1885

ses Session object that contains the EPR cache1886

az_cred (Optional) Additional authorization credentials or attributes, query string format.1887

soap_respXML payload, as a string1888

return SOAP Envelope of the response, as a string, ready to be sent as HTTP response.1889

1890

3.3.9 Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt, act, n)1891

First search epr cache, and if miss, go discover an EPR over the net. This is the main work horse for1892

WSCs wishing to call WSPs via EPR.1893

cf TAS3 configuration object, also used for memory allocation1894

ses Session object in whose EPR cache the file will be searched1895

svc Service type (usually a URN)1896

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or actual service1897

endpoint URL.1898

di_opt (Optional) Additional discovery options for selecting the service, query string format1899

act (Optional) The action, or method, that must be invokable on the service1900

n Which matching instance is returned. 1 means first1901

return EPR data structure on success, 0 on failure (no discovery EPR in cache, or not found by the1902

discovery service).1903

1904

3.3.10 url = tas3_get_epr_url(cf, epr)1905

cf TAS3 configuration object, also used for memory allocation1906

epr An EPR object, such as obtained fromtas3_get_epr()1907

return The<a:Address> field of an EPR as a string. This is the endpoint URL.1908

TAS3_D2p4_Protocols_API_Concrete_Arch Page 57 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

1909

3.3.11 entityid = tas3_get_epr_entid(cf, epr)1910

cf TAS3 configuration object, also used for memory allocation1911

epr An EPR object, such as obtained fromtas3_get_epr()1912

return The<di:ProviderID> field of an EPR as a string. This is same as SAML2 EntityID.1913

1914

3.3.12 a7n = tas3_get_epr_a7n(cf, epr)1915

cf TAS3 configuration object, also used for memory allocation1916

epr An EPR object, such as obtained fromtas3_get_epr()1917

return Assertion from EPR<sec:Token> field as a string.1918

1919

3.3.13 Available Implementations (Non-normative)1920

This binding is implemented by php_zxid module, available as part of thezxid.org1921

TAS3_D2p4_Protocols_API_Concrete_Arch Page 58 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

1922

3.4 C and C++ Binding1923

Essentially this is a procedural C binding that is also usable from C++. In fact, the C binding can be1924

used as a base for many other language bindings generated using SWIG [?] interface generator.1925

The binding is declared intas3.h and implemented inlibtas3.a, libtas3.so, or libtas3.dll,1926

depending on the platform. Typical source code file will pull in the TAS3 API by including1927

#include <tas3.h>1928

1929

3.4.1 cf = tas3_new_conf_to_cf(conf)1930

Prototype1931

tas3_conf* tas3_new_conf_to_cf(const char* conf);1932

Create a new TAS3 configuration object given configuration string and possibly configuration file. Usu-1933

ally a configuration object is generated and passed around to different API calls to avoid reparsing the1934

configuration at each API call.1935

conf Configuration string1936

return Configuration object1937

1938

3.4.2 ses = tas3_new_ses(cf)1939

Prototype1940

tas3_ses* tas3_new_conf_to_cf(const char* conf);1941

Create a new TAS3 session object. Usually a session object is created just before calling1942

cf Configuration object1943

return Session object1944

1945

3.4.3 SSO: ret = tas3_sso_cf_ses(cf, qs_len, qs, ses, &res_len, auto_flags)1946

Prototype1947

char* tas3_sso_cf_ses(tas3_conf* cf, int qs_len, char* qs,1948

tas3_ses* ses, int* res_len, int auto_flags);1949

Strings are length + pointer (no C string nul termination needed).1950

cf Configuration object, seetas3_new_conf_to_cf()1951

qs_len Length of the query string. -1 = usestrlen()1952

qs Query string (or POST content)1953

ses Session object, seetas3_new_ses(). Session object is modified.1954

res_len Result parameter. If non-null, will be set to the length of the returned string1955

TAS3_D2p4_Protocols_API_Concrete_Arch Page 59 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

auto_flags Automation flags1956

return String representing protocol action or SSO attributes1957

Example1958

01 {1959

02 tas3_conf* cf = tas3_new_conf_to_cf("PATH=/var/tas3/");1960

03 tas3_ses* ses = tas3_new_ses(cf);1961

04 char* ret = tas3_sso_cf_ses(cf, -1, env("QUERY_STRING"), ses, 0, 0x1800);1962

05 switch (ret[0]) {1963

06 case ’d’: break; /* Successful login */1964

07 ... /* Processing other outcomes omitted for brevity. */1965

08 }1966

09 if (tas3_az_cf_ses(cf, "", ses)) {1967

10 /* SSO successful and authorization permit. Do some work. */1968

11 } else {1969

12 /* SSO successful but authorization denied */1970

13 }1971

14 }1972

1973

3.4.4 Authorization: decision = tas3_az_cf_ses(cf, qs, ses)1974

Prototype1975

char* tas3_az_cf_ses(tas3_conf* cf, const char* qs, tas3_ses* ses);1976

Call Policy Decision Point (PDP) to obtain an authorization decision about a contemplated action on a1977

resource.1978

cf the configuration object1979

qs additional attributes that are passed to PDP1980

ses session object, from which most attributes come1981

return 0 on deny (for any reason, e.g. indeterminate), or non-null if permit.1982

1983

3.4.5 WSC: resp_soap = tas3_call(cf, ses, svctype, url, di_opt, az_cred, req_soap)1984

Prototype1985

struct zx_str* tas3_call(tas3_conf* cf, tas3_ses* ses, const char* svctype,1986

const char* url, const char* di_opt, const char* az_cred,1987

const char* req_soap);1988

cf Configuration object, seetas3_new_conf_to_cf()1989

ses Session object, used to locate EPRs, seetas3_new_ses()1990

svctype Service type and namespace URN that is applicable to the body. Passed as a string.1991

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or actual service1992

endpoint URL.1993

di_opt (Optional) Additional discovery options for selecting the service, query string format1994

TAS3_D2p4_Protocols_API_Concrete_Arch Page 60 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

az_cred (Optional) Additional authorization credentials or attributes, query string format.1995

req_soap string used as SOAP body or as SOAP envelope template.1996

return SOAP envelope as a string1997

1998

3.4.6 resp_soap = tas3_callf(cf, ses, svctype, url, di_opt, az_cred, fmt, ...)1999

Prototype2000

tas3_str* tas3_callf(tas3_conf* cf, tas3_ses* ses, const char* svctype,2001

const char* url, const char* di_opt, const char* az_cred,2002

const char* fmt, ...);2003

The tas3_callf()variant, which allowsprintf(3) style formatting, is highly convenient for C program-2004

mers. Others will probably use the plantas3_call()and rely on language’s native abilities to construct the2005

string.2006

cf Configuration object, seetas3_new_conf_to_cf()2007

ses Session object, used to locate EPRs, seetas3_new_ses()2008

svctype Service type and namespace URN that is applicable to the body. Passed as a string.2009

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or actual service2010

endpoint URL.2011

di_opt (Optional) Additional discovery options for selecting the service, query string format2012

az_cred (Optional) Additional authorization credentials or attributes, query string format.2013

fmt printf style format string that is used to describe the body of the call as a string. If fmt contains format2014

specifiers, then additional arguments are used to expand these.2015

return SOAP envelope as a string2016

2017

3.4.7 WSP: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req)2018

Prototype2019

char* tas3_wsp_validate(tas3_conf* cf, tas3_ses* ses,2020

const char* az_cred, const char* soap_req);2021

cf TAS3 configuration object, seetas3_new_conf()2022

ses Session object that contains the EPR cache, seetas3_new_ses()2023

az_cred (Optional) Additional authorization credentials or attributes, query string format.2024

soap_req Entire SOAP envelope as a string2025

return idpnid, as a string, of the target identity of the request (rest of the information is populated to the2026

session object, from where it can be retrieved).2027

TAS3_D2p4_Protocols_API_Concrete_Arch Page 61 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2028

3.4.8 WSP: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp)2029

Prototype2030

tas3_str* tas3_wsp_decorate(tas3_conf* cf, tas3_ses* ses,2031

const char* az_cred, const char* soap_resp);2032

cf TAS3 configuration object, seetas3_new_conf()2033

ses Session object that contains the EPR cache2034

az_cred (Optional) Additional authorization credentials or attributes, query string format.2035

soap_respXML payload as a string2036

return SOAP Envelope of the response, as a string, ready to be sent as HTTP response.2037

2038

3.4.9 WSP: soap = tas3_wsp_decoratef(cf, ses, az_cred, fmt, ...)2039

Prototype2040

tas3_str* tas3_wsp_decorate(tas3_conf* cf, tas3_ses* ses,2041

const char* az_cred, const char* fmt, ...);2042

cf TAS3 configuration object, seetas3_new_conf()2043

ses Session object that contains the EPR cache2044

az_cred (Optional) Additional authorization credentials or attributes, query string format.2045

fmt printf style format string that is used to describe the body of the response as a string. If fmt contains2046

format specifiers, then additional arguments are used to expand these.2047

return SOAP Envelope of the response, as a string, ready to be sent as HTTP response.2048

2049

3.4.10 Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt, act, n)2050

Prototype2051

tas3_epr* tas3_get_epr(tas3_conf* cf, tas3_ses* ses,2052

const char* svc, const char* url, const char* di_opt,2053

const char* action, int n);2054

First search epr cache, and if miss, go discover an EPR over the net. This is the main work horse for2055

WSCs wishing to call WSPs via EPR.2056

cf TAS3 configuration object, also used for memory allocation2057

ses Session object in whose EPR cache the file will be searched2058

svc Service type (usually a URN)2059

url (Optional) If provided, this argument has to match either the ProviderID, EntityID, or actual service2060

endpoint URL.2061

di_opt (Optional) Additional discovery options for selecting the service, query string format2062

TAS3_D2p4_Protocols_API_Concrete_Arch Page 62 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

act (Optional) The action, or method, that must be invokable on the service2063

n Which matching instance is returned. 1 means first2064

return EPR data structure on success, 0 on failure (no discovery EPR in cache, or not found by the2065

discovery service).2066

2067

3.4.11 url = tas3_get_epr_url(cf, epr)2068

Prototype2069

tas3_str* tas3_get_epr_url(tas3_conf* cf, tas3_epr* epr);2070

cf TAS3 configuration object, also used for memory allocation2071

epr An EPR object, such as obtained fromtas3_get_epr()2072

return The<a:Address> field of an EPR as a string. This is the endpoint URL.2073

2074

3.4.12 entityid = tas3_get_epr_entid(cf, epr)2075

Prototype2076

tas3_str* tas3_get_epr_entid(tas3_conf* cf, tas3_epr* epr);2077

cf TAS3 configuration object, also used for memory allocation2078

epr An EPR object, such as obtained fromtas3_get_epr()2079

return The<di:ProviderID> field of an EPR as a string. This is same as SAML2 EntityID.2080

2081

3.4.13 a7n = tas3_get_epr_a7n(cf, epr)2082

Prototype2083

tas3_str* tas3_get_epr_a7n(tas3_conf* cf, tas3_epr* epr);2084

cf TAS3 configuration object, also used for memory allocation2085

epr An EPR object, such as obtained fromtas3_get_epr()2086

return Assertion from EPR<sec:Token> field as a string.2087

2088

3.4.14 Available Implementations (Non-normative)2089

This binding is implemented, at least, byzxid.org open source implementation, which serves as the2090

reference implementation of the TAS3 core security architecture.2091

N.B. Thetas3_sso()API is implemented by zxid’szxid_simple()API.2092

TAS3_D2p4_Protocols_API_Concrete_Arch Page 63 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2093

3.5 Other Language Bindings2094

At present stage of the TAS3 project (2009) we only offer Java, PHP, and C/C++ bindings, but in future2095

we aim supporting also at least the following2096

• C# / .Net / Mono2097

• Perl (currentlyzxid.org derived Net::SAML perl module, available fromcpan.org, supports most2098

functionality of TAS3 API, but this is unofficial)2099

• Python2100

• Ruby2101

We welcome external contribution and language specialist help in making all these bindings available.2102

Please contact Sampo Kellomäki (sampo@symlabs.com) if you are interested.2103

TAS3_D2p4_Protocols_API_Concrete_Arch Page 64 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2104

4 Deployment and Integration Models (Non-normative)2105

IdP Discovery

SP1: Frontend SP2: Web Service

Master
PDP1

Master
PDP2

User

Trust PDP

H
T
T
P

W
S
C

P
E
P

S
S
O

A
t
t
r

P
E
P

e
t
c

Payload
Servlet

P
E
P

s
e
s

JSESSION

ZXSES

H
T
T
P WSPin PEP-rs-in

WSPout PEP-rs-out
e
t
c

DB

Inter-
ceptor

Inter-
ceptor

P
E
P

XACML SAML profile

XACML SAML profile
with TAS3 Trust extensions

ID-WSF 2.0
Discovery
with TAS3 Trust
extensions

D
I
C

ID-WSF 2.0
w/TAS3 ext

SAML 2.0

CTX
1

2

3

7

Figure 4.1:A deployment architecture for SSO and web service call.

The above diagram illustrates a typical frontend-backend integration situation.2106

The TAS3 integration can be accomplished in several ways, from least intrusive to the original (legacy)2107

application to more intrusive, but also more granular:2108

Proxy or mediation box approach See also [?] Fig-8.2 "Using a Gateway for Legacy Applications".2109

This approach is completely application independent and simply TAS3 wraps existing protocol.2110

Limitation tends to be that TAS3 authorization and obligations have to be applied at granularity of a2111

protocol message rather than the data in it.2112

Application server filter approach Either web server module, like mod_auth_saml, or an application2113

server module, like Servlet Filter or AXIS2 Interceptor, is inserted to the processing stack. While2114

software realization is quite different, this is still similar to the mediation box model.2115

Application class dependent filter approachSimilar to the above filter approach, but the filter has some2116

ability to "drill in" to the application protocol. For example, if all data in the application is repre-2117

sented in uniform format, such as Java Objects, then a generic filter can be supplied that applies2118

authorization and obligations to all data represented in such way.2119

API approach This approach relies the application programmer to instrument his application with neces-2120

sary authorization and other calls. We are simply trying to make his job easier by providing readily2121

available, TAS3 certified, APIs that make the instrumenting job easy.2122

2123

4.1 Frontend and Web Services Client Integration Model (Non-normative)2124

The tasks to be accomplished on the Frontend, in the direct line of call, include2125

1. Detect need for login (done by payload servlet)2126

TAS3_D2p4_Protocols_API_Concrete_Arch Page 65 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2. Perform SSO (SP side)2127

3. Perform SSO, IdP side including authenticating user and shipping attributes2128

4. Gater additional attributes, if needed ("Attr")2129

5. Authorize access to FE (PEP-Rs-In of FE) ("PEP")2130

6. Populate session of the payload servlet ("ses")2131

7. Redirect user to protected resource he was trying to access on the protected resource.2132

8. Application dependent PEP calls PDP if needed. ("PEP")2133

9. Call web service, including2134

a. Application dependent processing steps ("etc")2135

b. Authorize the call (PEP-Rq-Out) ("PEP")2136

c. Discover suitable service, performing Trust and Privacy Negotiation (may need interaction at fron-2137

tend web gui) if needed. ("DIC")2138

d. Decorate request with TAS3 specific SOAP headers and sign. ("WSC")2139

10. Perform network I/O ("HTTP"). This also includes TLS certificate authentication of the Responder2140

and may include Client-TLS certificate authentication of the Requester.2141

The SSO integration is expected to be a single module, appearing as a servlet in Java realization and as2142

an authentication module in web server realization, that handles steps 2-7 automatically. The integration2143

is accomplished by configuring the web server without modifying the application except to add the initial2144

detection and redirect (1) and to make use of the attributes that were populated to the session.1 The TAS3
2145

binary modules for SSO are generically called T3-SSO-*.2146

The WSC integration is expected to be a single module. It will appear as AXIS2 module in Java realiza-2147

tion so that it can be just hooked in by configuration without any modification to the existing web service2148

(the "etc" module illustrates that even other modules than TAS3 can be hooked in without interference2).2149

The API realization of WSC is a function,tas3_call()(see TAS3 API), that the application can call2150

directly. If this approach is chosen, the entire web services call is handled by the API without any regard2151

to servlet environment’s or framework’s hooking or modules. This is the most common approach in PHP,2152

Perl, C#, C++, and C worlds.2153

A possible variant of WSC integration is to calltas3_call_prepare()to obtain the serialized SOAP enve-2154

lope, then do the I/O part in application dependent way, and pass the response totas3_response_validate().2155

Effectively tas3_call()does these steps with a built-in HTTP client performing the I/O part.3
21562157

4.1.1 Integration Using ZXID (Non-normative)2158

Further information about using ZXID for TAS3 is available in README.zxid-tas3,zxid-tas3.pd,2159

andzxid-java.pd2160

The official TAS3 API is provided bytas3.h which maps the TAS3 API definitions to the underlying2161

zxid ones.2162

The Java realization of SSO is provided by zxidsrvlet class and servlet. This is packaged as TAS3 binary2163

module T3-SSO-ZXID-JAVA.2164

The web server realization of SSO is provided by mod_auth_saml Apache module (mod_auth_saml.so).2165

It is packaged as TAS3 binary module T3-SSO-ZXID-MODAUTHSAML.2166

1In mod_auth_saml realization even step (1) can be accomplished by configuring the web server.
2Non-interference depends on other modules following certain common sense conventions, such as not signing SOAP

<e:Headers> element and not trying to create SOAP headers that TAS3 creates (e.g.<wsse:Security>).
3In ZXID realization the HTTP client is libcurl from curl.haxx.se

TAS3_D2p4_Protocols_API_Concrete_Arch Page 66 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

IdP Discovery

SP1: Frontend SP2: Web Service

Master
PDP1

Master
PDP2

User

Trust PDP

H
T
T
P

W
S
C

P
E
P

S
S
O

A
t
t
r

P
E
P

e
t
c

Payload
Servlet

P
E
P

s
e
s

JSESSION

ZXSES

H
T
T
P WSPin PEP-rs-in

WSPout PEP-rs-out
e
t
c

DB

Inter-
ceptor

Inter-
ceptor

P
E
P

XACML SAML profile

XACML SAML profile
with TAS3 Trust extensions

ID-WSF 2.0
Discovery
with TAS3 Trust
extensions

D
I
C

ID-WSF 2.0
w/TAS3 ext

SAML 2.0

CTX
1

2

3

7

T3-SSO

KENT KENT

ZXID
Servlet
Filter

zx_az() zx_az()

ZXID
AXIS2
Module

zxid_wsp_validate()

zxid_wsp_decorate()

T3-API

Figure 4.2:API and modules for SSO and web service call.

IdP Discovery

SP1: Frontend SP2: Web Service

Master
PDP1

Master
PDP2

User

Trust PDP

H
T
T
P

W
S
C

P
E
P

S
S
O

A
t
t
r

P
E
P

e
t
c

Payload
Servlet

P
E
P

s
e
s

JSESSION

ZXSES

H
T
T
P WSPin PEP-rs-in

WSPout PEP-rs-out
e
t
c

DB

Inter-
ceptor

Inter-
ceptor

P
E
P

XACML SAML profile

XACML SAML profile
with TAS3 Trust extensions

ID-WSF 2.0
Discovery
with TAS3 Trust
extensions

D
I
C

ID-WSF 2.0
w/TAS3 ext

SAML 2.0

CTX
1

2

3

7

mod_auth_saml
or zxidservlet

zxid_simple()

zxididp zxididp

KENT KENT

TUE

ZXID
Servlet
Filter

zx_az() zx_az()

TAS3 Integration w/ZXID
20091016 SK

ZXID
AXIS2
Module

zxid_simple_call()

zxid_wsp_validate()

zxid_wsp_decorate()

T3-SSO-MODAUTHSAML

T3-SSO-JAVA

T3-IDP-ZXID

Figure 4.3:ZXID specific API and modules for SSO and web service call.

API realization of SSO is provided byzxid_simple()in libzxid.a. This is packaged as TAS3 binary2167

module T3-SSO-ZXID-PHP.4 Other language binding specific modules are expected in the future.2168

4Although not TAS3 packaged, Net::SAML perl module provides the same functionality.

TAS3_D2p4_Protocols_API_Concrete_Arch Page 67 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2169

4.1.2 Integration Using Other Platforms, Frameworks, and Packages (Non-2170

normative)2171

Other mainstream packages are invited to submit integration descriptions similar to previous section2172

(ZXID). The details of the integration should be in package’s own documentation.21732174

4.2 Web Services Provider Integration Model (Non-normative)2175

The tasks to be accomplished on the Service Responder, in the direct line of call, include2176

A. Listen for HTTP requests (typically done by platform)2177

B. Parse and validate a web services request, e.g. calltas3_wsp_validate(). This involves checking for2178

valid signature from trusted authority.2179

C. Authorize the request, extracting from the request the pledges (in<b:UsageDirective>) ("PEP-Rs-2180

In").2181

D. Apply other filters and post processing steps ("etc")2182

E. Authorize each data item separately using input interceptor. For queries this is usually a no-op, but for2183

creates or updates this is meaningful. When data is accepted for the repository, the authorization step2184

can result in obligations or sticky-policies being written into the database along side the data itself.2185

The authorization is configurable according to Application Independent PEP configuration, described2186

elsewhere, or Application Dependent PEP approach can be taken, calling the PDP directly ("PEP").2187

F. Authorize each returned data item separately using input interceptor. Usually applicable to query2188

results. The per item authorization will apply systemwide and item specific policies (sticky policies)2189

and obligations and produce a deny or permit-with-obligations response.2190

The authorization is configurable according to Application Independent PEP configuration, described2191

elsewhere, or Application Dependent PEP approach can be taken, calling the PDP directly ("PEP").2192

G. Authorize the response in aggregate ("PEP-Rs-Out"). At this stage one of the most important veri-2193

fications is to compare the pledges collected in step C ("PEP-Rs-In") and filter out any data whose2194

obligations are stricter.2195

Optimization . It is possible to combine the pledges to obligations matching (in G) to the2196

per result item authorization (F) by simply feeding the pledges as inputs to the PDP in (F).2197

Such optimization can not, however, achieve all functionality of the G ("PEP-Rs-Out") as it2198

is unable to see the bigger picture, i.e. consider all data together as a set. A typical example2199

would be a rule against leaking simultaneously day and month of birth and year of birth.2200

H. Decorate the response with TAS3 specific SOAP headers. This is typically done by callingtas3_wsp_decorate().2201

I. Send the response. This is typically done by platform dependent means.2202

TAS3_D2p4_Protocols_API_Concrete_Arch Page 68 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2203

5 Resilient Deployment Architecture (Non-normative)2204

This section addresses Req.D1.2-2.8-Avail.2205

For TAS3 services to be dependable, they need to be deployed so that they are resilient to system and2206

network failure. Resiliency and efficiency are the first lines of defense against Denial of Service attacks2207

that try to attack simple catastrophic vulnerabilities or overwhelm the system on the point where it is most2208

inefficient. Resiliency needs to be considered at several layers, namely on the Front Channel and on the2209

Back Channel.2210

UA UA

Frontend Server Farm

Mid tier, SOA

B ackends, core services

Load Balancing and Routing

Load Balancing and Routing

Load Balancing and Routing

Figure 5.1:Layering of resilience features for Front Channel, Back Channel, and data center Back End services.

UA UA

FE1 FE2 FE3

WSP-A WSP-B

Backend I Backend II Backend III

Virtual IP
Redundancy using VRRP
Hardware Loadbalancers

Figure 5.2:Resiliency implemented using hardware load balancers.

Note that the virtual IP address is hosted either in hardware load balancer, or one member of a cluster.2211

Fail-over of the virtual IP is arranged using Virtual Router Redundancy Protocol (VRRP) [?].2212

TAS3_D2p4_Protocols_API_Concrete_Arch Page 69 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

UA UA

FE1 FE2 FE3

WSP-A WSP-B

Backend I Backend II Backend III

Virtual IP
Redundancy using VRRP
Hardware Loadbalancers

Load Balancing
and Routing
built into products
or protocols

Virtual IP provided
by Clustering
Data Replication
to maintain coherence

Figure 5.3:Resiliency implemented using software load-balancing-fail-over functionality and clustering.

2213

5.1 Zero Downtime Updates2214

This section addresses Req.D1.2-7.19-DynaUpd.2215

For continued availability of the system, Zero-Downtime-Update (ZDTU) technology SHOULD be2216

implemented through out. If horizontal scaling path and failure recovery have been implemented, then2217

ZDTU can be implemented easily by taking out of farm one server at a time and updating it. Downside of2218

this approach is that the farm will temporarily be in an inconsistent state.2219

If consistency of the farm is at all times a requirement, no easy ZDTU approach exists. One approach2220

is to bring up new "hot standbys" along side of the old configuration and then do instantaneous switch. As2221

the switch over is less than 1 second, this could be considered ZDTU.2222

Never-the-less, as TAS3 is business process driven and as business processes can take long time to2223

complete (if human interaction is required, this could easily mean days or weeks), thus consistent ZDTU2224

is infeasible in practise and the business process modelling should explicitly foresee handling of upgrade2225

situations, i.e. how old processes are handled after the general upgrade.2226

TAS3_D2p4_Protocols_API_Concrete_Arch Page 70 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2227

6 Feasibility and Performance Analysis (Non-normative)2228

TAS3 Architecture is rather complex so we need to analyze the runtime cost of implementing it. The2229

cost can be divided in six categories2230

T Connection overhead, including TCP handshake and TLS handshake. The latter involves one public2231

key operation on both sides, unless TLS connection cache hit is achieved. Except for the cache hit2232

case, connection overhead is mostly unavoidable given TAS3 Architecture’s division of components.2233

Sometimes co-locating several components in same host may allow use of localhost connection to2234

avoid handshake overhead. The TLS overhead may be avoidable in localhost and secure internal2235

network cases. The TCP overhead is very sensitive to latency: usually a precondition for a connec-2236

tion is to resolve a domain name: this means one round trip latency cost. Then actual threeway TCP2237

handshake needs to be performed, causing three round trip latencies. Finally TLS handshake causes2238

at least one more round trip. Therefore the time cost of a connection tends to be minimum of 52239

round trip latencies. Higher the latency, more time it takes to process a call and more simultaneous2240

calls are needed to keep up the same through put.2241

C Communication overhead: this consists of compression, encryption (symmetric stream cipher), and2242

transfer of the actual data. Mostly unavoidable. As communication cost and stream cipher tend2243

to be neglible compared to TCP + TLS handshake and digital signatures, we will not consider2244

communication cost in our calculations.2245

S Digital signature overhead: usually at least one public key operation is involved on each side. Often2246

responder side needs to verify several digital signatures: one for the message and one for each token2247

or credential it receives. The signature overhead is mostly unavoidable, though some caching and2248

session techniques may reduce it in case of often repeated actions.2249

X XML overhead: the arcane and poorly designed features, such as namespaces and canonicalization, of2250

XML cause significant processing overhead (not to mention bugs). In some Java implementations2251

of digital signature processing the XML formatting consumes as much CPU as the public key op-2252

eration. Even in the best of breed implementations XML formatting has significant cost, usually2253

about 20% of the cost of a public key operation. XML cost could be eliminated by choosing a more2254

rational data format.2255

Z Authorization cost. Evaluation of rule set will depend heavily on the particular ruleset and its imple-2256

mentation technology. Some rulesets are know to take exponential time to evaluate. Authorization2257

cost is exclusively borne by the PDP components. While a PDP may incur additional cost in validat-2258

ing credentials, this is not taken in account here (but can be accounted as digital signature overhead).2259

P Payload cost. This is the cost of running the actual application and is unavoidable. Since we are trying2260

to measure the overhead cost of TAS3 Architecture, the payload is assumed to be free.2261

In cost calculations we will use units with overall cost computed as show in following table:2262

The cost is unevenly divided among the entities in the TAS3 trust network, but the division depends2263

heavily on whether caching can be utilized. If the usage pattern is isolated single operations, the IdP,2264

discovery, and credential issuance tend to become hotspots because these functions are relied on by many2265

other players in the network. For single operations the TLS cache misses will penalize the system overall.2266

If the usage pattern is repeat operations, then the bottleneck tends to shift towards responder processing:2267

credentials can be cached, but they still need to be validated every time (some checksum based validation2268

cache may be feasible, but has not been explored yet).2269

Overall bottlenecks in both cases include audit bus logging, local audit trail (especially if digitally2270

signed), and authorization. In this analysis audit bus is assumed to work by exchanging digitally signed2271

SOAP messages and each exchange to be authorized separately.2272

To explore the cost we will consider two scenarios.2273

TAS3_D2p4_Protocols_API_Concrete_Arch Page 71 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Table 6.1:Units of cost computation and their RSA equivalence

Unit RSA Eq. Definition

T 1.5 One TLS connection establishment. Not entirely RSA com-
parable as latency component is involved.

t 0.5 One TLS connection establishment, with connection cache
hit (avoids public key operation)

S 1 One digital signature generation or validation
X 1 One XML document parse or canonicalization
Z 0.5 One ruleset evaluation.

2274

6.1 Single use of single web service2275

This scenario consists of user making Single Sign-On to a frontend and invoking an operation that2276

requires calling a web service. The sequence of events and the cost is indicated in the table.2277

Table 6.1: Cost of TAS3 single use scenario2278

Operation IdP + Disc. Frontend FE PDP Responder Rs PDP Audit Bus Audit Bus PDP

1. SSO 2T+4S+4X=11 4T+3S+5X=14 2T+2S+3X+Z=8.5 4(2T+S+3X)=28 4(T+2X+Z)=16
2. Discovery 2T+3S+3X=9 T+S+X=3.5 2T+S+3X=7 t+2X+Z=2.5
3. Trust & Priv. T+2X=3.5 2T+S+3X=7 2T+S+3X=7 t+2X+Z=2.5
4. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
5. Send request 2T+2S+2X=7 2T+3S+3X=9 2(2t+S+3X)=8 2(t+2X+Z)=5
6. Rs In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
7. Payload
8. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
9. Send response t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
10. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
11 Process Oblig 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
12. SLO 2t+2S+3X=5 2t+2S+3X=5 2(2t+S+3X)=8 2(t+2X+Z)=5
TOTAL 5T+9S+12X=28.57T+11S+19X=40.52T+6S+11X+3Z=21.52T+6S+11X=20 2T+5S+11X+2Z=2012T+18S+54X=90 4T+36X+18Z=512279

The grand total is 34T+55S+154X+23Z=271.5 RSA operation equivalents.2280

For a fair comparison, a simple web service call without any authorization or auditing, using HTTP2281

Basic authentication and TLS, the cost is shown in the following table. The total cost of such unsecure2282

call is estimated as 8.5 RSA operation equivalents. The cost of a fully secure platform appears to be about2283

31 times that of unsecure platform.2284

Table 6.2: Cost of unsecure single use scenario2285

Operation Frontend Responder

1. Login T=1.5
5. Send request T+X=2.5 T+X=2.5
7. Payload 0
9. Send response X=1 X=1
TOTAL 2T+S+2X=5 1T+S+2X=3.52286

TAS3_D2p4_Protocols_API_Concrete_Arch Page 72 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2287

6.1.1 Cost without auditing2288

Above calculation shows that the Audit Bus substantially adds to the cost. Here’s the same calculation2289

without Audit Bus.2290

Table 6.3: Cost of TAS3 single use scenario without auditing2291

Operation IdP + Disc. Frontend FE PDP Responder Rs PDP

1. SSO 1T+2S+2X=5.5 3T+2S+4X=10.5 T+S+2X+Z=5
2. Discovery 1T+2S+2X=5.5 T+S+X=3.5
3. Trust & Priv. T+2X=3.5 T+2X=3.5
4. Rq Out PEP T+2X=3.5 1T+1S+3X+1Z=6
5. Send request 1T+1S+1X=3.5 1T+2S+1X=4.5
6. Rs In PEP T+2X=3.5 1T+1S+3X+1Z=6
7. Payload 0
8. Rs Out PEP T+2X=3.5 1T+1S+3X+1Z=6
9. Send response S+X=2 S+X=2
10. Rq In PEP T+2X=3.5 T+S+3X+Z=6
11. Process Obli T+X=2.5 T+X=2.5
12. SLO T+S+2X=4.5 T+S+2X=4.5
TOTAL 4T+5S+8X=19 9T+6S+14X=33.5 3T+3S+8X+3Z=17 4T+3S+7X=16 3T+2S+8X+2Z=15.52292

The grand total without auditing is 23T+19S+45X+5Z=101 RSA operation equivalents. As can be2293

seen, the Audit Bus represents 63% of the total cost. Most of the Audit Bus cost is actually caused by2294

requirement to contact the bus and authorize the sending of messages. A future revision of the architecture2295

will explore the possibility of persistent connection to the Audit Bus. This would significantly reduce the2296

T, t, S, and Z aspects of the Audit Bus processing, though at least one signature overhead will be needed2297

at the message source to ensure untamperability of the audit trail.2298

Another optimization would be to improve the authorization step of the Audit Bus, perhaps co-locating2299

the Audit Bus PDP with the Audit Bus itself.23002301

6.1.2 Cost without auditing and without authorization2302

Another recurring activity are the frequent calls to the PDPs. Following table explores how much could2303

be saved by optimising these calls.2304

Table 6.4: Cost of TAS3 single use scenario without auditing and without authorization2305

Operation IdP + Disc. Frontend Responder

1. SSO 1T+2S+2X=5.5 3T+2S+4X=10.5
2. Discovery 1T+2S+2X=5.5 T+S+X=3.5
5. Send request 1T+1S+1X=3.5 1T+2S+1X=4.5
7. Payload
9. Send response S+X=2 S+X=2
11. Process Oblig T+X=2.5 T+X=2.5
12. SLO T+S+2X=4.5 T+S+2X=4.5
TOTAL 3T+5S+6X=15.5 7T+6S+10X=26.5 2T+3S+3X=92306

The grand total without audit and without authorization is 12T+14S+19X+0Z=51 RSA operation equiv-2307

alents. The authorization steps (excluding Audit Bus related authorization) seem to be adding about as2308

much over head as the entire rest of the web service call.2309

The bare ID-WSF 2.0 web service call compares relatively favorably with bare unsecure web service2310

call: 51 vs. 8.5 - only 6 times heavier.2311

TAS3_D2p4_Protocols_API_Concrete_Arch Page 73 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2312

6.1.3 Cost without XML2313

Since XML processing is needlessly expensive, lets analyze what the cost could be with non-XML2314

protocols like RESTful approach using Simple Web Tokens [?].2315

Table 6.5: Cost of TAS3 single use scenario without XML2316

Operation IdP + Disc Frontend FE PDP Responder Rs PDP Audit Bus Audit Bus PDP

1. SSO 2T+4S=7 4T+3S=9 2T+2S+Z=5.5 4(2T+S)=16 4(T+Z)=8
2. Discovery 2T+3S=6 T+S=2.5 2T+S=4 T+Z=2
3. Trust & Priv. T=1.5 2T+S=4 2T+S=4 T+Z=2
4. Rq Out PEP T=1.5 2T+2S+Z=5.5 2T+S=4 T+Z=2
5. Send request 2T+2S=5 2T+3S=6 2(2T+S)=8 2(T+Z)=4
6. Rs In PEP T=1.5 2T+2S+Z=5.5 2T+S=4 T+Z=2
7. Payload
8. Rs Out PEP T=1.5 2T+2S+Z=5.5 2T+S=4 T+Z=2
9. Send response T+2S=3.5 T+2S=3.5 2(2T+S)=8 2(T+Z)=4
10. Rq In PEP T=1.5 2T+2S+Z=5.5 2T+S=4 T+Z=2
11. Process Obli 2T+S=4 2T+S=4 2(2T+S)=8 2(T+Z)=4
12. SLO 2T+2S=5 2T+2S=5 2(2T+S)=8 2(T+Z)=4
TOTAL 7T+9S=19.5 14T+11S=32 6T+6S+3Z=16.5 7T+6S=16.5 6T+5S+2Z=15 36T+18S=72 18T+S+X+18Z=362317

Without the XML, but otherwise fully featureful architecture leads to grand total of 94T+55S+0X+23Z=207.52318

RSA equivalents. Thus eliminating XML can lead to over 40% of savings.23192320

6.2 Session of 3 frontends and five web services2321

This session is meant to illustrate the types of savings available from caching discovery results.2322

The three frontends are all accessed in the same single sign-on session, leading to savings at IdP. Each2323

frontend then calls two web services. One (A) is common, shared web service. Other (B) is new web2324

service (new for each frontend), but the service is called 4 times, which leads to EPR cache hits. The2325

pattern also encourages TLS cache hits. We also assume repeated calls to PDP and audit bus lead to TLS2326

cache hits.2327

Table 6.6: Cost of TAS3 multi use scenario2328

Operation IdP + Disc. Frontend FE PDP Responders Rs PDPs Audit Bus Audit Bus PDP

1. SSOw/auth 2T+4S+4X=11 4T+3S+5X=14 2T+2S+3X+Z=8.5 4(2T+S+3X)=28 4(t+2X+Z)=10
2. Discovery A 2t+3S+3X=6 T+S+X=3.5 2t+S+3X=4 t+2X+Z=2.5
3. Trust & Priv. T+2X=3.5 2T+S+3X=7 2T+S+3X=7 t+2X+Z=2.5
4. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
5. Send request T+t+2S+2X=5.5 T+t+3S+3X=7.5 2(2t+S+3X)=8 2(t+2X+Z)=5
6. Rs In PEP T+2X=3.5 2T+2S+4X+Z=9.5 2t+S+3X=4 t+2X+Z=2.5
7. Payload
8. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
9. Send response t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
10. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
11. Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
12. Discovery B 2t+3S+3X=6 T+S+X=3.5 2t+S+3X=4 t+2X+Z=2.5
13. Trust & Priv. T+2X=3.5 2T+S+3X=7 2T+S+3X=7 t+2X+Z=2.5
14. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
15. Send request T+t+2S+2X=5.5 T+t+3S+3X=7.5 2(2t+S+3X)=8 2(t+2X+Z)=5
16. Rs In PEP T+2X=3.5 2T+2S+4X+Z=9.5 2t+S+3X=4 t+2X+Z=2.5
17. Payload
18. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
19. Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
20. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
21. Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
22. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
23. Send request 2t+2S+2X=4 2t+3S+3X=6 2(2t+S+3X)=8 2(t+2X+Z)=5
24. Rs In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
25. Payload
26. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
27. Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
28. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
29. Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=52329

TAS3_D2p4_Protocols_API_Concrete_Arch Page 74 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Table 6.6 (continued): Cost of TAS3 multi use scenario2330

Operation IdP + Disc. Frontend FE PDP Responders Rs PDPs Audit Bus Audit Bus PDP

30. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
31. Send request 2t+2S+2X=4 2t+3S+3X=6 2(2t+S+3X)=8 2(t+2X+Z)=5
32. Rs In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
33. Payload
34. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
35. Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
36. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
37. Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
38. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
39. Send request 2t+2S+2X=4 2t+3S+3X=6 2(2t+S+3X)=8 2(t+2X+Z)=5
40. Rs In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
41. Payload
42. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
43. Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
44. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
45. Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
46. SSO ses act t+4S+4X=8 4T+3S+5X=14 2T+2S+3X+Z=8.5 4(2T+S+3X)=28 4(t+2X+Z)=10
47. Discovery A 2t+3S+3X=6 T+S+X=3.5 2t+S+3X=4 t+2X+Z=2.5
48. Trust & Priv. T+2X=3.5 2T+S+3X=7 2T+S+3X=7 t+2X+Z=2.5
49. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
50. Send request T+t+2S+2X=5.5 T+t+3S+3X=7.5 2(2t+S+3X)=8 2(t+2X+Z)=5
51. Rs In PEP T+2X=3.5 2T+2S+4X+Z=9.5 2t+S+3X=4 t+2X+Z=2.5
52. Payload
53. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
54. Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
55. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
56. Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
57. Discovery C 2t+3S+3X=6 T+S+X=3.5 2t+S+3X=4 t+2X+Z=2.5
58. Trust & Priv. T+2X=3.5 2T+S+3X=7 2T+S+3X=7 t+2X+Z=2.5
59. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
60. Send request T+t+2S+2X=5.5 T+t+3S+3X=7.5 2(2t+S+3X)=8 2(t+2X+Z)=5
61. Rs In PEP T+2X=3.5 2T+2S+4X+Z=9.5 2t+S+3X=4 t+2X+Z=2.5
62. Payload
63. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
64. Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
65. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
66. Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
67. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
68. Send request 2t+2S+2X=4 2t+3S+3X=6 2(2t+S+3X)=8 2(t+2X+Z)=5
69. Rs In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
70. Payload
71. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
72. Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
73. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
74. Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
75. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
76. Send request 2t+2S+2X=4 2t+3S+3X=6 2(2t+S+3X)=8 2(t+2X+Z)=5
77. Rs In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
78. Payload
79. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
80. Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
81. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
82. Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
83. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
84. Send request 2t+2S+2X=4 2t+3S+3X=6 2(2t+S+3X)=8 2(t+2X+Z)=5
85. Rs In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
86. Payload
87. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
88. Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
89. Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
90. Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=52331

TAS3_D2p4_Protocols_API_Concrete_Arch Page 75 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Table 6.6 (continued): Cost of TAS3 multi use scenario2332

Operation IdP + Disc. Frontend FE PDP Responders Rs PDPs Audit Bus Audit Bus PDP

91. SSO ses act t+4S+4X=8 4T+3S+5X=14 2T+2S+3X+Z=8.5 4(2T+S+3X)=28 4(t+2X+Z)=10
92. Discovery A 2t+3S+3X=6 T+S+X=3.5 2t+S+3X=4 t+2X+Z=2.5
93. Trust & Priv. T+2X=3.5 2T+S+3X=7 2T+S+3X=7 t+2X+Z=2.5
94. Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
95. Send request T+t+2S+2X=5.5 T+t+3S+3X=7.5 2(2t+S+3X)=8 2(t+2X+Z)=5
96. Rs In PEP T+2X=3.5 2T+2S+4X+Z=9.5 2t+S+3X=4 t+2X+Z=2.5
97. Payload
98. Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
99. Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
100 Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
101 Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
102 Discovery D 2t+3S+3X=6 T+S+X=3.5 2t+S+3X=4 t+2X+Z=2.5
103 Trust & Priv. T+2X=3.5 2T+S+3X=7 2T+S+3X=7 t+2X+Z=2.5
104 Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
105 Send request T+t+2S+2X=5.5 T+t+3S+3X=7.5 2(2t+S+3X)=8 2(t+2X+Z)=5
106 Rs In PEP T+2X=3.5 2T+2S+4X+Z=9.5 2t+S+3X=4 t+2X+Z=2.5
107 Payload
108 Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
109 Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
110 Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
111 Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
112 Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
113 Send request 2t+2S+2X=4 2t+3S+3X=6 2(2t+S+3X)=8 2(t+2X+Z)=5
114 Rs In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
115 Payload
116 Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
117 Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
118 Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
119 Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
120 Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
121 Send request 2t+2S+2X=4 2t+3S+3X=6 2(2t+S+3X)=8 2(t+2X+Z)=5
122 Rs In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
123 Payload
124 Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
125 Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
126 Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
127 Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
128 Rq Out PEP t+2X=2 2t+2S+4X+1Z=6.5 2t+S+3X=4 t+2X+Z=2.5
129 Send request 2t+2S+2X=4 2t+3S+3X=6 2(2t+S+3X)=8 2(t+2X+Z)=5
130 Rs In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
131 Payload
132 Rs Out PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
133 Send respons t+2S+2X=4 t+2S+2X=4 2(2t+S+3X)=8 2(t+2X+Z)=5
134 Rq In PEP t+2X=2 2t+2S+4X+Z=6.5 2t+S+3X=4 t+2X+Z=2.5
135 Process Obli 2t+S+2X=3 2t+S+2X=3 2(2t+S+3X)=8 2(t+2X+Z)=5
136 SLO 2T+2S+3X=8 2T+2S+3X=8 2(2t+S+3X)=8 2(T+2X+Z)=8
TOTAL 10T+32S+45X 26T+92S+174X 6T+66S+129X+33Z12T+90S+165X 24T+66S+138X+30Z36T+176S+528X T+352X+176Z
TOTAL RSA =92 =305 =220.5 =273 =255 =758 =4432333

This sequence of 15 web service calls has grand total of 116T+522S+1531X+239Z=2346.5 RSA equiv-2334

alents, which works out to about 156 RSA equivalents per web service call. As can be seen the cache2335

effects and amortization of the SSO and discovery over several calls makes a significant impact. The2336

amortized cost is 58% of the single call cost. Effectively the amortized calls are 18 times heavier than2337

plain web service calls.2338

TAS3_D2p4_Protocols_API_Concrete_Arch Page 76 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2339

7 Best Practises2340

1. Each entity chooses its own Entity ID. When you are setting up a SP, you choose your Entity ID and2341

the IdP(s)MUST be able to adapt to your choice. Similarily, an IdP decides its own Entity ID and all2342

SPs MUST be able to adapt to it.2343

2. Entity IDs MUST be unique within a Circle of Trust (CoT). Given that CoT relationships may change2344

from time to time, its best to choose Entity ID so that it is globally unique. If Entity ID contains a2345

domain name as a component, then theglobally uniqueproperty tends to be enforced by the domain2346

name allocation system.2347

3. Entity ID SHOULD be the Well Known Location (WKL), i.e. the URL from which the metadata can2348

be fetched.2349

4. Providing metadata by URL, ideally by the Entity ID, SHOULD always be enabled. This greatly2350

facilitates configuration.2351

5. After you get an installation to work, be sure to review whether the default configuration is appropriate2352

for production use2353

a. Decide whether you want to run open federation and disable it if needed.2354

b. Prune your Circle of Trust. List who you trust and delete the misfits.2355

c. Check validity time tolerances you accept. The defaults may be rather generous for production use.2356

d. Review that you did not turn off any signature validation just to get it to work. All signature valida-2357

tions are there for reason and you should not go to production if any of them fail.2358

e. Check permissions on private keys and think whether your private keys, including web server SSL2359

one, are protected. Could they have been compromised during trial period?2360

f. Check that your public image is conveyed right in your metadata. Orgqanization name, contact2361

URLs, logotype, etc. However, be forewarned that changing these on last minute changes your2362

metadata and you may need to engage in an additional round of metadata exchanges when you go2363

to production.2364

g. Make sure you have a solution in place to keep your audit trail in case you ever have to go to court.2365

Seezxid-log.pd for details. You may also want to think about encrypting or deleting some items2366

after a while to reduce your liability for breaches.2367

TAS3_D2p4_Protocols_API_Concrete_Arch Page 77 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2368

8 Annex A: Examples2369

These XML blobs, taken from [?], are for reference only. They are not normative. They have been2370

pretty printed. Indentation indicates nesting level and closing tags have been abbreviated as "</>". The2371

actual XML on the wire generally does not have any whitespace.23722373

8.1 SAML 2.0 Artifact Response with SAML 2.0 SSO Assertion and2374

Two Bootstraps2375

Both bootstraps illustrate SAML assertion as bearer token.2376

<soap:Envelope2377

xmlns:lib="urn:liberty:iff:2003-08"2378

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"2379

xmlns:wsa="http://www.w3.org/2005/08/addressing">2380

<soap:Body>2381

2382

<sp:ArtifactResponse2383

xmlns:sp="urn:oasis:names:tc:SAML:2.0:protocol"2384

ID="REvgoIIlkzTmk-aIX6tKE"2385

InResponseTo="RfAsltVf2"2386

IssueInstant="2007-02-10T05:38:15Z"2387

Version="2.0">2388

<sa:Issuer2389

xmlns:sa="urn:oasis:names:tc:SAML:2.0:assertion"2390

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">2391

https://a-idp.liberty-iop.org:8881/idp.xml</>2392

<sp:Status>2393

<sp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/></>2394

2395

<sp:Response2396

xmlns:sp="urn:oasis:names:tc:SAML:2.0:protocol"2397

ID="RCCzu13z77SiSXqsFp1u1"2398

InResponseTo="NojFIIhxw"2399

IssueInstant="2007-02-10T05:37:42Z"2400

Version="2.0">2401

<sa:Issuer2402

xmlns:sa="urn:oasis:names:tc:SAML:2.0:assertion"2403

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">2404

https://a-idp.liberty-iop.org:8881/idp.xml</>2405

<sp:Status>2406

<sp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/></>2407

2408

<sa:Assertion2409

xmlns:sa="urn:oasis:names:tc:SAML:2.0:assertion"2410

ID="ASSE6bgfaV-sapQsAilXOvBu"2411

IssueInstant="2007-02-10T05:37:42Z"2412

Version="2.0">2413

<sa:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">2414

https://a-idp.liberty-iop.org:8881/idp.xml</>2415

2416

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">2417

<ds:SignedInfo>2418

TAS3_D2p4_Protocols_API_Concrete_Arch Page 78 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>2419

<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>2420

<ds:Reference URI="#ASSE6bgfaV-sapQsAilXOvBu">2421

<ds:Transforms>2422

<ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>2423

<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/></>2424

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>2425

<ds:DigestValue>r8OvtNmq5LkYwCNg6bsRZAdT4NE=</></></>2426

<ds:SignatureValue>GtWVZzHYW54ioHk/C7zjDRThohrpwC4=</></>2427

2428

<sa:Subject>2429

<sa:NameID2430

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"2431

NameQualifier="https://a-idp.liberty-iop.org:8881/idp.xml">PB5fLIA4lRU2bH4HkQsn9</>2432

<sa:SubjectConfirmation2433

Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">2434

<sa:SubjectConfirmationData2435

NotOnOrAfter="2007-02-10T06:37:41Z"2436

Recipient="https://sp1.zxidsp.org:8443/zxidhlo?o=B"/></></>2437

2438

<sa:Conditions2439

NotBefore="2007-02-10T05:32:42Z"2440

NotOnOrAfter="2007-02-10T06:37:42Z">2441

<sa:AudienceRestriction>2442

<sa:Audience>https://sp1.zxidsp.org:8443/zxidhlo?o=B</></></>2443

2444

<sa:Advice>2445

2446

<!-- This assertion is the credential for the ID-WSF 1.1 bootstrap (below). -->2447

2448

<sa:Assertion2449

ID="CREDOTGAkvhNoP1aiTq4bXBg"2450

IssueInstant="2007-02-10T05:37:42Z"2451

Version="2.0">2452

<sa:Issuer2453

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">2454

https://a-idp.liberty-iop.org:8881/idp.xml</>2455

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">2456

<ds:SignedInfo>2457

<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>2458

<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>2459

<ds:Reference URI="#CREDOTGAkvhNoP1aiTq4bXBg">2460

<ds:Transforms>2461

<ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>2462

<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/></>2463

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>2464

<ds:DigestValue>dqq/28hw5eEv+ceFyiLImeJ1P8w=</></></>2465

<ds:SignatureValue>UKlEgHKQwuoCE=</></>2466

<sa:Subject>2467

<sa:NameID/> <!-- *** Bug here!!! -->2468

<sa:SubjectConfirmation2469

Method="urn:oasis:names:tc:SAML:2.0:cm:bearer"/></>2470

<sa:Conditions2471

TAS3_D2p4_Protocols_API_Concrete_Arch Page 79 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

NotBefore="2007-02-10T05:32:42Z"2472

NotOnOrAfter="2007-02-10T06:37:42Z">2473

<sa:AudienceRestriction>2474

<sa:Audience>https://sp1.zxidsp.org:8443/zxidhlo?o=B</></></></></>2475

2476

<sa:AuthnStatement2477

AuthnInstant="2007-02-10T05:37:42Z"2478

SessionIndex="1171085858-4">2479

<sa:AuthnContext>2480

<sa:AuthnContextClassRef>2481

urn:oasis:names:tc:SAML:2.0:ac:classes:Password</></></>2482

2483

<sa:AttributeStatement>2484

2485

<!-- Regular attribute -->2486

2487

<sa:Attribute2488

Name="cn"2489

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">2490

<sa:AttributeValue>Sue</></>2491

2492

<!-- ID-WSF 1.1 Bootstrap for discovery. See also the Advice, above. -->2493

2494

<sa:Attribute2495

Name="DiscoveryResourceOffering"2496

NameFormat="urn:liberty:disco:2003-08">2497

<sa:AttributeValue>2498

<di12:ResourceOffering2499

xmlns:di12="urn:liberty:disco:2003-08"2500

entryID="2">2501

<di12:ResourceID>2502

https://a-idp.liberty-iop.org/profiles/WSF1.1/RID-DISCO-sue</>2503

<di12:ServiceInstance>2504

<di12:ServiceType>urn:liberty:disco:2003-08</>2505

<di12:ProviderID>https://a-idp.liberty-iop.org:8881/idp.xml</>2506

<di12:Description>2507

<di12:SecurityMechID>urn:liberty:security:2005-02:TLS:Bearer</>2508

<di12:CredentialRef>CREDOTGAkvhNoP1aiTq4bXBg</>2509

<di12:Endpoint>https://a-idp.liberty-iop.org:8881/DISCO-S</></></>2510

<di12:Abstract>Symlabs Discovery Service Team G</></></></>2511

2512

<!-- ID-WSF 2.0 Bootstrap for Discovery. The credential (bearer token) is inline. -->2513

2514

<sa:Attribute2515

Name="urn:liberty:disco:2006-08:DiscoveryEPR"2516

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">2517

<sa:AttributeValue>2518

<wsa:EndpointReference2519

xmlns:wsa="http://www.w3.org/2005/08/addressing"2520

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"2521

notOnOrAfter="2007-02-10T07:37:42Z"2522

wsu:Id="EPRIDcjP8ObO9In47SDjO9b37">2523

<wsa:Address>https://a-idp.liberty-iop.org:8881/DISCO-S</>2524

TAS3_D2p4_Protocols_API_Concrete_Arch Page 80 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

<wsa:Metadata xmlns:di="urn:liberty:disco:2006-08">2525

<di:Abstract>SYMfiam Discovery Service</>2526

<sbf:Framework xmlns:sbf="urn:liberty:sb" version="2.0"/>2527

<di:ProviderID>https://a-idp.liberty-iop.org:8881/idp.xml</>2528

<di:ServiceType>urn:liberty:disco:2006-08</>2529

<di:SecurityContext>2530

<di:SecurityMechID>urn:liberty:security:2005-02:TLS:Bearer</>2531

2532

<sec:Token2533

xmlns:sec="urn:liberty:security:2006-08"2534

usage="urn:liberty:security:tokenusage:2006-08:SecurityToken">2535

2536

<sa:Assertion2537

ID="CREDV6ZBMyicmyvDq9pLIoSR"2538

IssueInstant="2007-02-10T05:37:42Z"2539

Version="2.0">2540

<sa:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">2541

https://a-idp.liberty-iop.org:8881/idp.xml</>2542

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">2543

<ds:SignedInfo>2544

<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>2545

<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>2546

<ds:Reference URI="#CREDV6ZBMyicmyvDq9pLIoSR">2547

<ds:Transforms>2548

<ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>2549

<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/></>2550

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>2551

<ds:DigestValue>o2SgbuKIBzl4e0dQoTwiyqXr/8Y=</></></>2552

<ds:SignatureValue>hHdUKaZ//cZ8UYJxvTReNU=</></>2553

<sa:Subject>2554

<sa:NameID2555

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"2556

NameQualifier="https://a-idp.liberty-iop.org:8881/idp.xml">2557

9my93VkP3tSxEOIb3ckvjLpn0pa6aV3yFXioWX-TzZI=</>2558

<sa:SubjectConfirmation2559

Method="urn:oasis:names:tc:SAML:2.0:cm:bearer"/></>2560

<sa:Conditions2561

NotBefore="2007-02-10T05:32:42Z"2562

NotOnOrAfter="2007-02-10T06:37:42Z">2563

<sa:AudienceRestriction>2564

<sa:Audience>https://a-idp.liberty-iop.org:8881/idp.xml</></></>2565

<sa:AuthnStatement AuthnInstant="2007-02-10T05:37:42Z">2566

<sa:AuthnContext>2567

<sa:AuthnContextClassRef>2568

urn:oasis:names:tc:SAML:2.0:ac:classes:Password</></></></></></></></></></></></></></></></>2569

N.B. TheAttributeStatement/Attribute/AttributeValue/EndpointReference/Metadata/ SecurityContext/Token/Assertion/Conditions/AudienceRestriction/Audience2570

is the same as the IdP because in many products the IdP and Discovery Service roles are implemented by2571

the same entity. Note also that the audience of the inner assertion is the discovery service where as the2572

audience of the outer assertion is the SP that will eventually call the Discovery Service.25732574

8.2 ID-WSF 2.0 Call with X509v3 Sec Mech2575

<e:Envelope2576

TAS3_D2p4_Protocols_API_Concrete_Arch Page 81 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"2577

xmlns:b="urn:liberty:sb:2005-11"2578

xmlns:sec="urn:liberty:security:2005-11"2579

xmlns:wsse="http://docs.oasis-open.org/wss/20 04/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"2580

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"2581

xmlns:wsa="http://www.w3.org/2005/08/ addressing">2582

<e:Header>2583

<wsa:MessageID wsu:Id="MID">123</>2584

<wsa:To wsu:Id="TO">...</>2585

<wsa:Action wsu:Id="ACT">urn:xx:Query</>2586

<wsse:Security mustUnderstand="1">2587

<wsu:Timestamp wsu:Id="TS"><wsu:Created>2005-06-17T04:49:17Z</></>2588

<wsse:BinarySecurityToken2589

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"2590

wsu:Id="X509Token"2591

EncodingType="http://docs.oas is-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary">2592

MIIB9zCCAWSgAwIBAgIQ...</>2593

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">2594

<ds:SignedInfo>2595

<ds:Reference URI="#MID">...</>2596

<ds:Reference URI="#TO">...</>2597

<ds:Reference URI="#ACT">...</>2598

<ds:Reference URI="#TS">...</>2599

<ds:Reference URI="#X509">2600

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>2601

<ds:DigestValue>Ru4cAfeBAB</></>2602

<ds:Reference URI="#BDY">2603

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>2604

<ds:DigestValue>YgGfS0pi56p</></></>2605

<ds:KeyInfo><wsse:SecurityTokenReference><wsse:Reference URI="#X509"/></></>2606

<ds:SignatureValue>HJJWbvqW9E84vJVQkjDElgscSXZ5Ekw==</></></></>2607

<e:Body wsu:Id="BDY">2608

<xx:Query/></></>2609

The salient features of the above XML blob are2610

• Signature that covers relevant SOAP headers and Body2611

• Absence of any explicit identity token.2612

Absence of identity token means that from the headers it is not possible to identify the taget identity.2613

The signature generally coveys the Invoker identity (the WSC that is calling the service). Since one WSC2614

typically serves many principals, knowing which principal is impossible. For this reason X509 security2615

mechanism is seldom used in ID-WSF 2.0 world (with ID-WSF 1.1 the ResourceID provides an alternative2616

way of identifying the principal, thus making X509 a viable option).26172618

8.3 ID-WSF 2.0 Call with Bearer (Binary) Sec Mech2619

<e:Envelope2620

xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"2621

xmlns:b="urn:liberty:sb:2005-11"2622

xmlns:sec="urn:liberty:security:2005-11"2623

xmlns:wsse="http://docs.oasis-open.org/wss/20 04/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"2624

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"2625

TAS3_D2p4_Protocols_API_Concrete_Arch Page 82 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

xmlns:wsa="http://www.w3.org/2005/03/ addressing">2626

<e:Header>2627

<wsa:MessageID wsu:Id="MID">...</>2628

<wsa:To wsu:Id="TO">...</>2629

<wsa:Action wsu:Id="ACT">urn:xx:Query</>2630

<wsse:Security mustUnderstand="1">2631

<wsu:Timestamp wsu:Id="TS">2632

<wsu:Created>2005-06-17T04:49:17Z</></>2633

<wsse:BinarySecurityToken2634

ValueType="anyNSPrefix:ServiceSess ionContext"2635

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64 Binary"2636

wsu:Id="BST">2637

mQEMAzRniWkAAAEH9RWir0eKDkyFAB7PoFazx3ftp0vWwbbzqXdgcX8fpEqSr1v42638

YqUc7OMiJcBtKBp3+jlD4HPUaurIqHA0vrdmMpM+sF2BnpND118f/mXCv3XbWhiL2639

VT4r9ytfpXBluelOV93X8RUz4ecZcDm9e+IEG+pQjnvgrSgac1NrW5K/CJEOUUjh2640

oGTrym0Ziutezhrw/gOeLVtkywsMgDr77gWZxRvw01w1ogtUdTceuRBIDANj+KVZ2641

vLKlTCaGAUNIjkiDDgti=</>2642

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig #">2643

<ds:SignedInfo>2644

<ds:Reference URI="#MID">...</>2645

<ds:Reference URI="#TO">...</>2646

<ds:Reference URI="#ACT">...</>2647

<ds:Reference URI="#TS">...</>2648

<ds:Reference URI="#BST">...</>2649

<ds:Reference URI="#BDY">2650

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1 "/>2651

<ds:DigestValue>YgGfS0pi56pu</></></>2652

...</></></>2653

<e:Body wsu:Id="BDY">2654

<xx:Query/></></>2655

2656

8.4 ID-WSF 2.0 Call with Bearer (SAML) Sec Mech2657

<e:Envelope2658

xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"2659

xmlns:sb="urn:liberty:sb:2005-11"2660

xmlns:sec="urn:liberty:security:2005-11"2661

xmlns:wsse="http://docs.oasis-open.org/wss/20 04/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"2662

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"2663

xmlns:wsa="http://www.w3.org/2005/08/addressing"2664

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"2665

xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">2666

<e:Header>2667

<sbf:Framework version="2.0-simple" e:mustUnderstand="1"2668

e:actor="http://schemas.../next"2669

wsu:Id="SBF"/>2670

<wsa:MessageID wsu:Id="MID">...</>2671

<wsa:To wsu:Id="TO">...</>2672

<wsa:Action wsu:Id="ACT">urn:xx:Query</>2673

<wsse:Security mustUnderstand="1">2674

<wsu:Timestamp wsu:Id="TS">2675

<wsu:Created>2005-06-17T04:49:17Z</></>2676

2677

TAS3_D2p4_Protocols_API_Concrete_Arch Page 83 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

<sa:Assertion2678

xmlns:sa="urn:oasis:names:tc:SAML:2.0:assertion"2679

Version="2.0"2680

ID="A7N123"2681

IssueInstant="2005-04-01T16:58:33.173Z">2682

<sa:Issuer>http://idp.symdemo.com/idp.xml</>2683

<ds:Signature>...</>2684

<sa:Subject>2685

<sa:EncryptedID>2686

<xenc:EncryptedData>U2XTCNvRX7Bl1NK182nmY00TEk==</>2687

<xenc:EncryptedKey>...</></>2688

<sa:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer"/></>2689

<sa:Conditions2690

NotBefore="2005-04-01T16:57:20Z"2691

NotOnOrAfter="2005-04-01T21:42:4 3Z">2692

<sa:AudienceRestrictionCondition>2693

<sa:Audience>http://wsp.zxidsp.org</></></>2694

<sa:AuthnStatement2695

AuthnInstant="2005-04-01T16:57:30.000Z"2696

SessionIndex="6345789">2697

<sa:AuthnContext>2698

<sa:AuthnContextClassRef>2699

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport</></></>2700

<sa:AttributeStatement>2701

<sa:EncryptedAttribute>2702

<xenc:EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element">2703

mQEMAzRniWkAAAEH9RbzqXdgcX8fpEqSr1v4=</>2704

<xenc:EncryptedKey>...</></></></>2705

2706

<wsse:SecurityTokenReference2707

xmlns:wsse11="..."2708

wsu:Id="STR1"2709

wsse11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0">2710

<wsse:KeyIdentifier2711

ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID">2712

A7N123</></>2713

2714

<ds:Signature>2715

<ds:SignedInfo>2716

<ds:Reference URI="#MID">...</>2717

<ds:Reference URI="#TO">...</>2718

<ds:Reference URI="#ACT">...</>2719

<ds:Reference URI="#TS">...</>2720

<ds:Reference URI="#STR1">2721

<ds:Transform Algorithm="...#STR-Transform">2722

<wsse:TransformationParameters>2723

<ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/></></></>2724

<ds:Reference URI="#BDY"/></>2725

...</></></>2726

<e:Body wsu:Id="BDY">2727

<xx:Query/></></>2728

TAS3_D2p4_Protocols_API_Concrete_Arch Page 84 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Note how the<Subject> and the attributes are encrypted such that only the WSP can open them. This2729

protects against WSC gaining knowledge of the NameID at the WSP.2730

TAS3_D2p4_Protocols_API_Concrete_Arch Page 85 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2731

9 Annex B: Technical Self Assessment Question-2732

naire2733

This questionnaire is to be used in partner intake process of a TAS3 compliant Trust Network. Effec-2734

tively this is a template that the trust network can adjust corresponding to its own policies. Typically2735

this questionnaire is used along side the legal questionnaire, see [?], 11.6 Annex IV "Self Assessment2736

Questionnaire".27372738

9.1 Overview and Scope2739

1. Please give your installation a unique name or reference that can be used in future communications.2740

Installation Name: ___________________________2741

2. Please supply your organizational and contact details2742

___________________2743

___________________2744

___________________2745

Technical contact for clarifications: ____________2746

Who filled this questionnaire: _____________2747

Date when filled or amended: ________2748

3. What architectural roles do you plan to play in Trust Network? (tick all that apply)2749

a. (__) Service Provider (SP), such as Frontend Web Site (FE), Web Services Client (WSC), Web2750

Services Provider (WSP) (other than WSP acting as Attribute Authority, see below).2751

b. (__) Attribute or Credentials Authority as a web service (some people call attribute authorities also2752

"identity providers", but see next item if you are performing SSO)2753

c. (__) Single Sign-On Identity Provider, Discovery Service, Discovery Registry, Identity Mapper, or2754

Delegation Service.2755

d. (__) Identity Aggregator or Linking Service2756

e. (__) Authorization Supplier (e.g. PDP) or Ontology Mapper towards external parties (if you merely2757

operate PDP internally, you do not need to tick this)2758

f. (__) Trust and Reputation provider towards external parties2759

g. (__) User Audit Dashboard or Interaction Service provider; or Credentials and Privacy Negotiation2760

agent for the user2761

h. (__) Online Compliance Testing Provider2762

i. (__) Trust Network configuration, management, oversight, or audit services; or certification author-2763

ity.2764

j. (__) Other, please specify: _________________________________2765

4. For each of the service instances you plan to run, please provide domain names and EntityIDs. If not2766

known yet, specify "not yet assigned" or "NYA".2767

Extend the table as needed or provide annex (e.g. spreadsheet with the information).2768

This table is just an initial survey and it is understood that it can be amended from time to time.2769

5. How do you plan to implement the service instances?2770

TAS3_D2p4_Protocols_API_Concrete_Arch Page 86 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

Table 9.1:Basic information about entities

N Domain Name EntityID Roles Remarks

1. sp.example.com https://sp.example.com/svc?o=B FE, WSC Example SP entry
2.
3.

a. (__) Complete outsource to a partner, which: ____________________2771

2772

If you tick this box you should have the partner fill the technical details of this questionnaire, or2773

provide a reference to a questionnaire they have filled separately.2774

b. (__) Software as a Service (SaaS), operated by you.2775

Which software or partner: _____________________, version: ___2776

Your SaaS provider should help you answer the technical questions.2777

c. (__) Operate commercial software on servers administered by you (e.g. own server, hosted root2778

server, server on Amazon Elastic Cloud, etc.)2779

Which software: _____________________, version: ___2780

d. (__) Operate open source software on servers administered by you (e.g. own server, hosted root2781

server, server on Amazon Elastic Cloud, etc.)2782

Which software: _____________________, version: ___2783

e. (__) Operate software developed by you or for you2784

Which software: _____________________, version: ___2785

6. Please provide volumetrics about your installation. We realize some of this information may not be2786

public or may not be available or accurate. Any information you can provide is helpful.2787

Number of potential users: _______________2788

Number of regular or frequent users: _______________2789

Number of tasks performed by a regular user on typical working day on your service: _______________2790

Any performance targets you expect from the system, such as maximum latency or required throughput:2791

______________________2792

7. Do you plan to implement any load balancing, scaling, or redundant resiliency measures? Please2793

specify: __________________2794

2795

9.2 System Entity Credentials and Private Keys2796

In TAS3, services and other system entities are identified using X509 digital certificates. They are used2797

in TLS connections for authentication using Client TLS and they are used for digital signatures.2798

Responsible management of the private keys associated with the digital certificates is the corner stone2799

of TAS3 accountability and liability framework. Your organization will be held responsible for all actions2800

performed using your private keys.2801

1. Which certification authority do you use for issuance of certificates? (if selfissued, indicate who in2802

your organization is responsible)2803

_________________________________2804

2. How do you generate private key and certification request?2805

_________________________________2806

TAS3_D2p4_Protocols_API_Concrete_Arch Page 87 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

3. What measures are in place to ensure that the private key remains confidential during generation, cer-2807

tificate issuance, and installation process? How do you know that no copy is left on any device (e.g.2808

USB stick of a consultant) used to handle the private key?2809

_________________________________2810

4. What backup arrangements do you have for the private key and how are they kept confidential?2811

_________________________________2812

5. Once installed on a server, how do you ensure confidentiality of the private key? (tick all that apply)2813

a. (__) Private key protected by hardware token2814

b. (__) Password required for each use of private key2815

c. (__) Password required for first use after reboot2816

d. (__) Filesystem permissions2817

e. (__) No root or administration access over the network. For example if you have configuredsudo(8)2818

so that no user is unlimited root and only appropriate process has access to the private key.2819

f. (__) All system administrators are authorized to access the private key2820

g. Other: _________________________________2821

6. If private key could be stored in a jump start, kick start, or backup image, what confidentiality measures2822

are in place to protect such images? _________________2823

7. Do you track or register who is authorized to access private keys?2824

How: _____________________________2825

Are there written records? ____________2826

8. Do you track or register who has system administration access to servers, especially if not all sysadms2827

are authorized to access private keys?2828

9. Do all those who are authorized to access private keys or who could have access to the private keys2829

(e.g. sysadms) go through training on private keys and sign a confidentiality undertaking regarding2830

them? __________2831

2832

9.3 Trust Management2833

1. What is your organization’s policy regarding which entities to trust:2834

a. (__) Trust anyone2835

b. (__) Trust all members of the Trust Network2836

c. (__) Trust all members of the Trust Network that also pass local check (e.g. black list)2837

d. (__) Explicit local check (e.g. white list)2838

e. (__) Other, please describe: _______________2839

2. What administrative and system administration procedures do you have in place to check that your2840

software is configured to trust only the entities that your organization has decided to trust?2841

3. What techniques and procedures do you use to ensure that the trust settings are not tampered with and2842

that if tampered, you detect the alterations in a timely manner?2843

TAS3_D2p4_Protocols_API_Concrete_Arch Page 88 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2844

9.4 Threat and Risk Assessments2845

1. Have you reviewed TAS3 Threat Analysis document [?]?2846

2. Have you reviewed TAS3 Risk Assessment document [?]?2847

3. With respect to the services you plan to deploy, which of the mitigation techniques discussed in [?] do2848

you plan to implement?2849

2850

9.5 Service Provider Questions2851

1. What is your Entity ID? _________________2852

Entity ID is decided by you, the organization operating the service. It should be a URL pointing to2853

your SAML metadata. Typically it consists of your domain name, some local path, and possibly of2854

software package dependent part. For example, in2855

https://sp.example.com/svc?o=B2856

the domain name is "sp.example.com", the local path is "/svc" and the product dependent part is2857

"?o=B". The local path depends on how your web server is configured. Consult product documen-2858

tation for the product dependent part, if any.2859

2. Does your site support Well Known Location method of SAML metadata exchange (i.e. the metadata2860

is available in the Entity ID URL, consult product documentation if in doubt)?2861

(__) Yes, (__) No2862

If not, what alternative arrangements do you have for metadata exchange?2863

3. How do you provide audit drilldown? (check all that apply)2864

a. (__) Stand alone web GUI. URL: ________________2865

b. (__) iFrame widget Web GUI. URL: ________________2866

c. (__) Audit drill down web service (ServiceType "urn:tas3:audit:2010-06")2867

4. Have you successfully tested sending messages to the Audit Event Bus?2868

2869

9.5.1 Front End (FE) Single Sign-On Questions2870

1. Is your software SAML 2.0 compliant? Is it certified? When, by whom: ____2871

2. Can your software handle ID-WSF 2.0 discovery bootstrap?2872

3. Which IdPs do you plan to use?2873

4. Have you exchanged metadata with the IdP?2874

5. Have you successfully tested SSO with the IdP?2875

TAS3_D2p4_Protocols_API_Concrete_Arch Page 89 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

2876

9.5.2 Web Service Provider (WSP) Questions2877

1. Is your software TAS3 or ID-WSF 2.0 compliant?2878

Is it certified? When, by whom: ____2879

2. Have you determined2880

a. SOAP endpoint URL: ___________________2881

b. Human friendly name for your service: _______________2882

c. Entity ID of your service (usually different from SOAP endpoint): __________________________2883

d. Service Type URI of your service: _______________________2884

The Service Type URI designates the type of service you provide. If you are providing a standard-2885

ized service, the relevant standard should specify what the Service Type URI is for services of that2886

type. All instances of the service use the same Service Type URI. Some well known Service Types:2887

• "urn:ios:pds:2010-05:dst-2.1" - Internet of Subjects Personal Data Store2888

• "urn:liberty:id-sis-dap:2006-08:dst-2.1" - Liberty ID Directory Access Protocol2889

• "urn:liberty:id-sis-cb:2004-10" - Liberty Contact Book Service2890

• "urn:liberty:id-sis-gl:2005-07" - Liberty Geolocation Service2891

• "http://www.3gpp.org/ftp/Specs/archive/23_series/23.140/schema/REL-6-MM7-1-4"2892

- ID-MM7 messaging service2893

If you created the service yourself, you can pick the URI as you please, provided that it is globally2894

unique. The usual convention is to use the namespace URI of the top level XML element of the2895

service payload, i.e. the namespace of the first child element of SOAP Envelope Body element.2896

3. Have you registered your service end point with a Discovery Service?2897

Often the Discovery Service Provider or IdP provides a registration interface on the web. For example2898

the TAS3 IdP provides "Circle of Trust Manager" at URLhttps://idp.tas3.eu/cot/2899

If you do not plan to use discovery, what arrangements do you plan to use to locate your service? What2900

arrangements do you plan to make for issuing security tokens for accessing your service?2901

4. Have you successfully tested calling your web service from a third party web service client?2902

5. Is your service an identity service, i.e. does it need to know something about the user?2903

6. Does your service need persistent handle to user, e.g. to track something about the user (this question2904

aims to establish whether your service needs to see persistent or transient NameID)?2905

7. What types of credentials need to be presented upon web service call to authorize the call?2906

This question aims at determining what credentials your callers will need to gather and present. We do2907

not need full description of your policy.2908

8. Do you need user to consent to anything and how do you arrange to obtain consent when needed? Do2909

you plan to use the Interaction Service facility and/or handle Interaction Redirect?2910

9. Are you capable to act as a Credentials and Privacy Negotiation server? If yes, please provide end point2911

URL: ________________2912

10. What security mechanisms are you willing and able to support2913

a. (__) Bearer Token2914

b. (__) Holder of Key Token2915

TAS3_D2p4_Protocols_API_Concrete_Arch Page 90 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

c. (__) X509 signature without token2916

d. (__) None2917

11. Which Policy Enforcement Points do you implement?2918

a. (__) Request Out PEP2919

b. (__) Response In PEP2920

c. (__) Other, please describe: _______________2921

12. Which Policy Decision Point do you use?2922

a. (__) Internal or built in2923

b. (__) External XACML PDP2924

c. (__) Other: _______________2925

13. Which obligations or policy languages do you use or support? (tick all that apply)2926

a. (__) SOL12927

b. (__) Permis2928

c. (__) XACML22929

d. (__) Other, please specify: _____________2930

2931

9.5.3 Attribute Authority Questions2932

These questions are in addition to the WSP questions of the previous section. You should answer these2933

questions if you are authority for, store, or broker user data, such as Personally Identifiable Information2934

(PII).2935

1. What is the nature and sensitivity of the user data you handle?2936

2. What obligations do you pledge to honour with respect to user data trusted in your possession?2937

Either describe in prose or provide specific policies using Simple Obligations Language 1 (SOL1) or2938

other obligations language you plan to use.2939

3. What obligations do you require other party to honour with respect to user data you release?2940

Either describe in prose or provide specific policies using Simple Obligations Language 1 (SOL1) or2941

other obligations language you plan to use.2942

4. Do you have automatic mechanims for satisfying the obligations you pledged? Please describe: ______________________2943

5. Do you have automatic mechanims for verifying that the requesting party pledges to respect the obli-2944

gations you issue?2945

6. What mechanisms do you provide to user and trust network operator to verify that you have complied2946

with your pledges?2947

7. What mechanisms do you have or require from others to verify that they have complied with their2948

pledges?2949

8. How do you protect the confidentiality of the stored user data? Describe any filesystem and crypto-2950

graphic protections you employ.2951

9. How do you provide Right of Access, Rectification, and Deletion?2952

TAS3_D2p4_Protocols_API_Concrete_Arch Page 91 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

a. (__) Stand alone web GUI. URL: ________________2953

b. (__) iFrame widget Web GUI. URL: ________________2954

c. (__) Other method: ____________________________2955

10. In the eventuality of Rectification or Deletion, are you able to notify the parties to whom you have2956

released the data in past?2957

11. What is your policy towards data requestors who refuse to subscribe to notifications? What about2958

receipients that subscribed, but refuse the actual notification?2959

2960

9.5.4 Web Service Client (WSC) Questions2961

A FE or WSP may act in secondary role of Web Service Client (WSC). If you call other web services2962

you should answer these questions.2963

1. Is your software TAS3 or ID-WSF 2.0 compliant?2964

Is it certified? When, by whom: ____2965

2. Are you able to use Credentials and Privacy Negotiation agent?2966

3. Are you able to handle Interaction Redirect if requested by WSP?2967

4. What security mechanisms are you willing and able to support2968

a. (__) Bearer Token2969

b. (__) Holder of Key Token2970

c. (__) X509 signature without token2971

d. (__) None2972

5. Which Policy Enforcement Points do you implement?2973

a. (__) Request Out PEP2974

b. (__) Response In PEP2975

c. (__) Other, please describe: _______________2976

6. Which Policy Decision Point do you use?2977

a. (__) Internal or built in2978

b. (__) External XACML PDP2979

c. (__) Other: _______________2980

7. Which obligations or policy languages do you use or support? (tick all that apply)2981

a. (__) SOL12982

b. (__) Permis2983

c. (__) XACML22984

d. (__) Other, please specify: _____________2985

8. What obligations do you pledge to honour with respect to user data returned to you?2986

Either describe in prose or provide specific policies using Simple Obligations Language 1 (SOL1) or2987

other obligations language you plan to use.2988

TAS3_D2p4_Protocols_API_Concrete_Arch Page 92 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

9. What obligations do you require other party to honour with respect to user data you send?2989

Either describe in prose or provide specific policies using Simple Obligations Language 1 (SOL1) or2990

other obligations language you plan to use.2991

10. Do you have automatic mechanims for satisfying the obligations you pledged? Please describe: ______________________2992

11. What mechanisms do you provide to user and trust network operator to verify that you have complied2993

with your pledges?2994

12. What mechanisms do you have or require from others to verify that they have complied with their2995

pledges?2996

2997

9.6 Single Sign-On Identity Provider (IdP), Discovery Service, Dis-2998

covery Registry, Identity Mapper, or Delegation Service Questions2999

1. Is your software SAML 2.0 and TAS3 or ID-WSF 2.0 compliant?3000

Is it certified? When, by whom: ____3001

2. If your IdP or Discovery Service provides attributes, also answer questions in the Attribute Authority3002

section, above.3003

3004

9.6.1 Identity Provider Questions3005

1. What authentication methods do you support (tick all that apply)3006

a. (__) One Time Password Token, such as Yubikey, RSA token, or similar3007

b. (__) Client certificate at user level or eID card3008

c. (__) Mobile phone based authentication3009

d. (__) Desktop Login based authentication3010

e. (__) Username and password3011

f. (__) Other, please specify: _____________________3012

2. What user intake or vetting procedures do you have?3013

3. What authentication context classes do you support and how do they map to the intake and authen-3014

tication methods you support? Please specify the URIs that will be used to indicate these in various3015

protocol transactions.3016

4. What types of NameIDs are you willing and able to support (tick all that apply)?3017

a. (__) Persistent per entity pseudonyms3018

b. (__) Transient per entity3019

c. (__) Persistent shared unique id (e.g. globally unique id or "national id")3020

d. (__) Transient shared (e.g. random ID shared across many entities)3021

5. Can you push attributes (if you can, you are also an Attribute Authority, see above)?3022

6. Do you support ID-WSF 2.0 discovery bootstrap attribute?3023

TAS3_D2p4_Protocols_API_Concrete_Arch Page 93 of94

TAS3 Protocols, API, and Concrete Architecture, 14 (1.67) 30 June 2010

3024

9.6.2 Discovery Service Questions3025

1. What registration mechanisms do you provide for WSPs?3026

URL of the registration interface: _______________________3027

2. What security mechanisms are you willing and able to support3028

a. (__) Bearer Token3029

b. (__) Holder of Key Token3030

c. (__) X509 signature without token3031

d. (__) None3032

3. What types of NameIDs are you willing and able to support (tick all that apply)?3033

a. (__) Persistent per entity pseudonyms3034

b. (__) Transient per entity3035

c. (__) Persistent shared unique id (e.g. globally unique id or "national id")3036

d. (__) Transient shared (e.g. random ID shared across many entities)3037

4. Can you push attributes? (if you can you are also an Attribute Authority)3038

5. Do you support pruning discovery results by trust scoring?3039

6. Do you support pruning discovery results based on Credentials and Privacy Negotiation?3040

3041

9.7 Any Other Architectural Role3042

As other TAS3 architectural roles are less common and require special considerations, this questionnaire3043

does not try to cover them. Please contact TAS3 consortium for further guidance.3044

TAS3_D2p4_Protocols_API_Concrete_Arch Page 94 of94

	List of Figures
	Executive Summary
	Introduction
	Standardized Wire Protocol Interfaces
	Composition and Co-location of Architectural Components

	Protocols and Profiles
	Signature and Encryption Considerations
	Supported Authentication and Login Systems
	System Entity Authentication
	SAML
	Proxy IdP Profile
	Shibboleth
	eID and Other Smart Cards
	One-Time-Password Tokens
	OpenID
	CardSpace / InfoCard and WS-Federation
	CA / Netegrity Siteminder Proprietary SSO
	Citrix, Sun, and other proprietary SSO
	Web Local Login
	Desktop Login
	Fat Client Login
	User Not Present or Batch Operations

	Supported Identity Web Services Systems
	Framework
	Liberty ID-WSF Profile
	Bare WS-Security Header or Simplified ID-WSF
	WS-Trust
	RESTful Approach
	Message Bus Approach

	Authorization Systems
	Authorization Queries
	Policy Languages

	Trust and Security Vocabularies
	Levels of Authentication (LoA)
	Vocabularies for Authorization
	Vocabularies for Basic Attributes (PII)
	Discovery Vocabularies
	Security and Trust Vocabularies
	Audit Vocabularies

	Realization of the Discovery Function
	Realization of the Credentials and Privacy Negotiator Function
	Discovery in Credentials and Privacy Negotiation
	Frontend Credentials and Privacy Negotiation
	Components of Credentials and Privacy Negotiator
	Protocol between Service Requester and the Credentials and Privacy Negotiation Agent
	Protocol between Credentials and Privacy Negotiation Agent and Attribute Aggregator
	Protocol between Credentials and Privacy Negotiation Agent and Service

	Using Trust Scoring in Discovery
	Specifying Trust Inputs
	Returning Trust Scores

	Realization of the Audit and Dashboard Function
	Audit Event Bus
	Audit Event Ontology
	Dashboard Function
	User Interaction
	TAS3 User Interaction Widget

	Realization of Delegation Function
	Attribute Authorities
	TAS3 Simple Obligations Language (SOL)
	SOL1 Query String Attributes
	Matching Pledges to Sticky Policies and Obligations
	Passing Simple Obligations Dictionaries Around

	Realization of Sticky Policies
	Passing Additional Credentials in Web Service Call
	Uniform Application Status and Error Reporting
	TAS3 Status Header
	TAS3 Status Codes
	TAS3 Control and Reporting Points

	Registration of Business Process Models

	The Official TAS3 API (normative, but non-exclusive)
	Language Independent Description of the API
	Single Sign On (SSO) Alternatives
	SSO: ret = tas3_sso(conf, qs, auto_flags)
	Authorization: decision = tas3_az(conf, qs, ses)
	Authorization base: decision = tas3_az_base(conf, qs, ses)
	Web Service Call: ret_soap = tas3_call(cf, ses, svctype, url, di_opt, az_cred, req_soap)
	Requester out: req_decor_soap = tas3_wsc_prepare_call(cf, ses, svctype, az_cred, req_soap)
	Requester in: status = tas3_wsc_valid_resp(cf, ses, az_cred, res_decor_soap)
	Responder in: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req)
	Responder out: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp)
	Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt, act, n)
	url = tas3_get_epr_url(cf, epr)
	entityid = tas3_get_epr_entid(cf, epr)
	a7n = tas3_get_epr_a7n(cf, epr)
	SOAP Fault and Status Generation and Inspection
	Delegated Discovery

	Java Binding
	Interface and Initialization
	Initialize: cf = tas3.new_conf_to_cf(conf)
	New session: ses = tas3.new_ses(cf)
	SSO: ret = tas3.sso_cf_ses(cf, qs_len, qs, ses, null, auto_flags)
	Authorization: decision = tas3.az_cf_ses(cf, qs, ses)
	WSC: resp_soap = tas3.call(cf, ses, svctype, url, di_opt, az_cred, req_soap)
	WSP: tgtnid = tas3.wsp_validate(cf, ses, az_cred, soap_req)
	WSP: soap = tas3.wsp_decorate(cf, ses, az_cred, soap_resp)
	Explicit Discovery: epr = tas3.get_epr(cf, ses, svc, url, di_opt, act, n)
	url = tas3.get_epr_url(cf, epr)
	entityid = tas3.get_epr_entid(cf, epr)
	a7n = tas3.get_epr_a7n(cf, epr)
	Available Implementations (Non-normative)

	PHP Binding
	Application Level Integration
	cf = tas3_new_conf_to_cf(conf)
	ses = tas3_new_ses(cf)
	SSO: ret = tas3_sso_cf_ses(cf, -1, qs, ses, null, auto_flags)
	Authorization: decision = tas3_az_cf_ses(cf, qs, ses)
	WSC: resp_soap = tas3_call(cf, ses, svctype, url, di_opt, az_cred, req_soap)
	WSP: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req)
	WSP: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp)
	Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt, act, n)
	url = tas3_get_epr_url(cf, epr)
	entityid = tas3_get_epr_entid(cf, epr)
	a7n = tas3_get_epr_a7n(cf, epr)
	Available Implementations (Non-normative)

	C and C++ Binding
	cf = tas3_new_conf_to_cf(conf)
	ses = tas3_new_ses(cf)
	SSO: ret = tas3_sso_cf_ses(cf, qs_len, qs, ses, &res_len, auto_flags)
	Authorization: decision = tas3_az_cf_ses(cf, qs, ses)
	WSC: resp_soap = tas3_call(cf, ses, svctype, url, di_opt, az_cred, req_soap)
	resp_soap = tas3_callf(cf, ses, svctype, url, di_opt, az_cred, fmt, ...)
	WSP: tgtnid = tas3_wsp_validate(cf, ses, az_cred, soap_req)
	WSP: soap = tas3_wsp_decorate(cf, ses, az_cred, soap_resp)
	WSP: soap = tas3_wsp_decoratef(cf, ses, az_cred, fmt, ...)
	Explicit Discovery: epr = tas3_get_epr(cf, ses, svc, url, di_opt, act, n)
	url = tas3_get_epr_url(cf, epr)
	entityid = tas3_get_epr_entid(cf, epr)
	a7n = tas3_get_epr_a7n(cf, epr)
	Available Implementations (Non-normative)

	Other Language Bindings

	Deployment and Integration Models (Non-normative)
	Frontend and Web Services Client Integration Model (Non-normative)
	Integration Using ZXID (Non-normative)
	Integration Using Other Platforms, Frameworks, and Packages (Non-normative)

	Web Services Provider Integration Model (Non-normative)

	Resilient Deployment Architecture (Non-normative)
	Zero Downtime Updates

	Feasibility and Performance Analysis (Non-normative)
	Single use of single web service
	Cost without auditing
	Cost without auditing and without authorization
	Cost without XML

	Session of 3 frontends and five web services

	Best Practises
	Annex A: Examples
	SAML 2.0 Artifact Response with SAML 2.0 SSO Assertion and Two Bootstraps
	ID-WSF 2.0 Call with X509v3 Sec Mech
	ID-WSF 2.0 Call with Bearer (Binary) Sec Mech
	ID-WSF 2.0 Call with Bearer (SAML) Sec Mech

	Annex B: Technical Self Assessment Questionnaire
	Overview and Scope
	System Entity Credentials and Private Keys
	Trust Management
	Threat and Risk Assessments
	Service Provider Questions
	Front End (FE) Single Sign-On Questions
	Web Service Provider (WSP) Questions
	Attribute Authority Questions
	Web Service Client (WSC) Questions

	Single Sign-On Identity Provider (IdP), Discovery Service, Discovery Registry, Identity Mapper, or Delegation Service Questions
	Identity Provider Questions
	Discovery Service Questions

	Any Other Architectural Role

